Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Vet Res ; 55(1): 9, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225617

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is a viral pathogen with substantial economic implications for the global swine industry. The existing vaccination strategies and antiviral drugs offer limited protection. Replication of the viral RNA genome encompasses a complex series of steps, wherein a replication complex is assembled from various components derived from both viral and cellular sources, as well as from the viral genomic RNA template. In this study, we found that ZNF283, a Krüppel-associated box (KRAB) containing zinc finger protein, was upregulated in PRRSV-infected Marc-145 cells and porcine alveolar macrophages and that ZNF283 inhibited PRRSV replication and RNA synthesis. We also found that ZNF283 interacts with the viral proteins Nsp9, an RNA-dependent RNA polymerase, and Nsp10, a helicase. The main regions involved in the interaction between ZNF283 and Nsp9 were determined to be the KRAB domain of ZNF283 and amino acids 178-449 of Nsp9. The KRAB domain of ZNF283 plays a role in facilitating Nsp10 binding. In addition, ZNF283 may have an affinity for the 3' untranslated region of PRRSV. These findings suggest that ZNF283 is an antiviral factor that inhibits PRRSV infection and extend our understanding of the interactions between KRAB-containing zinc finger proteins and viruses.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Animais , Suínos , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Ligação Proteica , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , RNA Viral/metabolismo , Dedos de Zinco , Replicação Viral
2.
Vet Microbiol ; 290: 109988, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244395

RESUMO

African swine fever virus (ASFV) has caused enormous economic losses since its first reported detection, and there is still no effective vaccines or drug treatment. During infection, viruses may employ various strategies, such as regulating the host endoplasmic reticulum stress/unfolded protein response or the formation of stress granules (SGs), to form an optimal environment for virus replication. However, how ASFV infection regulates host endoplasmic reticulum stress, eIF2α-regulated protein synthesis, and the formation of SGs remains unclear. Here, we evaluated the activation of ER stress and its three downstream axes during ASFV infection and identified a powerful dephosphorylation of eIF2α by ASFV ex vivo. This strong dephosphorylation property could maintain the efficiency of eIF2α-mediated de novo global protein synthesis, thus ensuring efficient viral protein synthesis at early stage. In addition, the powerful dephosphorylation of eIF2α by ASFV upon infection could also inhibit the formation of SGs induced by sodium arsenite. In addition, a specific eIF2α dephosphorylation inhibitor, salubrinal, could partially counteract ASFV-mediated eIF2α dephosphorylation and inhibit viral replication. Our results provide new insights into the areas of ASFV`s escape from host immunity and hijacking of the host protein translation system.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Doenças dos Suínos , Animais , Suínos , Vírus da Febre Suína Africana/genética , Grânulos de Estresse , Replicação Viral , Biossíntese de Proteínas
3.
Vet Microbiol ; 290: 110002, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295489

RESUMO

African swine fever has caused substantial economic losses to China`s pig industry in recent years. Currently, the highly pathogenic African swine fever virus strain of genotype II is predominantly circulating in China, accompanied by a series of emerging isolates displaying unique genetic variations. The pathogenicity of these emerging strains is still unclear. Recently, a novel ASFV strain with a distinguishable three-large-fragment gene deletion was obtained from the field specimens, and its in vivo pathogenicity and transmission were evaluated in this study. The animal experiment involved inoculating a high dose of YNFN202103 and comparing its effects with those of the highly pathogenic strain GZ201801_2. Results showed that pigs infected by YNFN202103 exhibited significantly prolonged onset and survival time, lower viremia levels, and less severe histopathological lesions compared to GZ201801_2. These findings contributed valuable insights into the pathogenicity and transmission of ASFV and its prevention and eradication strategies in practical settings.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Doenças dos Suínos , Suínos , Animais , Vírus da Febre Suína Africana/genética , Virulência/genética , Deleção de Genes , China , Doenças dos Suínos/genética
4.
Virus Evol ; 9(2): vead060, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868933

RESUMO

Since 2018, the outbreaks of genotype II African swine fever virus (ASFV) in China and several eastern Asian countries have caused a huge impact on the local swine industry, resulting in huge economic losses. However, little is known about the origin, genomic diversity, evolutionary features, and epidemiological history of the genotype II ASFV. Here, 14 high-quality complete genomes of ASFVs were generated via sequencing of samples collected from China over the course of 3 years, followed by phylogenetic and phylodynamic analyses. The strains identified were relatively homogeneous, with a total of 52 SNPs and 11 indels compared with the prototype strain HLJ/2018, among which there were four exceptionally large deletions (620-18,023 nt). Evolutionary analyses revealed that ASFV strains distributed in eastern Asia formed a monophyly and a 'star-like' structure centered around the prototype strain, suggesting a single origin. Additionally, phylogenetic network analysis and ancestral reconstruction of geographic state indicated that genotype II ASFV strains in eastern Asia likely originated from Western Europe. Overall, these results contribute to the understanding of the history and current status of genotype II ASFV strains in eastern Asian, which could be of considerable importance in disease control and prevention.

5.
Front Microbiol ; 14: 1273589, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37904874

RESUMO

Porcine epidemic diarrhea (PED) is an enterophilic infectious disease caused by the porcine epidemic diarrhea virus (PEDV), which can lead to dehydration-like diarrhea in piglets with a mortality rate of up to 100%, causing huge economic losses to the global pig industry. In this study, we isolated two PEDV strains, FS202201 and JY202201, from diarrheal samples collected from two new PED outbreak farms in 2022. We performed phylogenetic analysis of the S gene and whole gene sequence. The effects of the different mutations on viral pathogenicity were investigated using piglet challenge experiments. The results showed that both strains belong to the G2c subtype, a widely prevalent virulent strain. Compared with FS202201, JY202201 harbored substitution and deletion mutations in nsp1. Both FS202201 and JY202201 infected piglets showed severe diarrhea and significant intestinal tissue lesions at an infection dose of 104 TCID50/mL, with a mortality rate of 50%; however, JY202201 required an additional day to reach mortality stabilization. An infection dose of 103 TCID50/mL reduced diarrhea and intestinal tissue lesions in piglets, with mortality rates of the two strains at 16.7% and 0%, respectively. In addition, PEDV was detected in the heart, liver, spleen, lungs, kidneys, mesenteric lymph nodes, stomach, large intestine, duodenum, jejunum, and ileum, with the highest levels in the intestinal tissues. In conclusion, this study enriches the epidemiology of PEDV and provides a theoretical basis for the study of its pathogenic mechanism and prevention through virus isolation, identification, and pathogenicity research on newly identified PED in the main transmission hub area of PEDV in China (Guangdong).

6.
Virol J ; 20(1): 242, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875895

RESUMO

BACKGROUND: African swine fever virus (ASFV) is one of the most fatal swine etiological agents and has a huge economic impact on the global pork industry. Given that no effective vaccines or anti-ASFV drugs are available, there remains a pressing need for novel anti-ASFV drugs. This study aimed to investigate the anti-African swine fever virus (ASFV) activity of brequinar, a DHODH inhibitor. METHODS: The anti-ASFV activity of brequinar was investigated using IFA, HAD, HAD50, qRT-PCR, and western blotting assays. The western blotting assay was used to investigate whether brequinar inhibits ASFV replication by killing ASFV particles directly or by acting on cell factors. The confocal microscopy and western blotting assays were used to investigate whether brequinar inhibits ASFV replication by activating ferroptosis. RESULTS: In this study, brequinar was found to effectively inhibit ASFV replication ex vivo in porcine alveolar macrophages (PAMs) in a dose-dependent manner. In kinetic studies, brequinar was found to maintain ASFV inhibition from 24 to 72 hpi. Mechanistically, the time-of-addition assay showed that brequinar exerted anti-ASFV activity in all treatment modes, including pre-, co-, and post-treatment rather than directly killing ASFV particles. Notably, FerroOrange, Mito-FerroGreen, and Liperfluo staining experiments showed that brequinar increased the accumulation of intracellular iron, mitochondrial iron, and lipid peroxides, respectively. Furthermore, we also found that ferroptosis agonist cisplatin treatment inhibited ASFV replication in a dose-dependent manner and the inhibitory effect of brequinar on ASFV was partially reversed by the ferroptosis inhibitor ferrostatin-1, suggesting that brequinar activates ferroptosis to inhibit ASFV replication. Interestingly, exogenous uridine supplementation attenuated the anti-ASFV activity of brequinar, indicating that brequinar inhibits ASFV replication by inhibiting DHODH activity and the depletion of intracellular pyrimidine pools; however, the induction of ferroptosis by brequinar treatment was not reversed by exogenous uridine supplementation, suggesting that brequinar activation of ferroptosis is not related to the metabolic function of pyrimidines. CONCLUSIONS: Our data confirm that brequinar displays potent antiviral activity against ASFV in vitro and reveal the mechanism by which brequinar inhibits ASFV replication by activating ferroptosis, independent of inhibiting pyrimidine synthesis, providing novel targets for the development of anti-ASFV drugs.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Ferroptose , Suínos , Animais , Replicação Viral , Di-Hidro-Orotato Desidrogenase , Cinética , Uridina/metabolismo , Ferro/metabolismo
7.
Front Vet Sci ; 10: 1207189, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483283

RESUMO

Since it was first reported in 1987, porcine reproductive and respiratory syndrome virus (PRRSV) has caused several economic crises worldwide. The current prevalence of PRRSV NADC30-like stains causing clinical disease outbreaks in Chain is highly concerning. Immunization against and the prevention of this infection are burdensome for farming organizations as the pathogen frequently mutates and undergoes recombination. Herein, the genetic characterization of a NADC30-like strain (termed BL2019) isolated from a farm in Guangdong Province, China, was analyzed and its pathogenicity for piglets and sows was assessed. Results revealed that BL2019 exhibits a nucleotide homology of 93.7% with NADC30 PRRSV and its NSP2 coding region demonstrates the same 131aa deletion pattern as that of NADC30 and NADC30-like. Furthermore, we identified two recombination breakpoints located nt5804 of the NSP5-coding region and nt6478 of NSP2-coding region, the gene fragment between the two breakpoints showed higher homology to the TJ strain(a representative strain of highly pathogenic PRRSV) compared to the NADC30 strain. In addition, BL2019 infection in piglets caused fever lasting for 1 week, moderate respiratory clinical signs and obvious visual and microscopic lung lesions; infection in gestating sows affected their feed intake and increased body temperature, abortion rates, number of weak fetuses, and other undesirable phenomena. Therefore, we report a NADC30-like PRRSV strain with partial recombination and a representative strain of HP-PRRSV, strain TJ, that can provide early warning and support for PRRS immune prevention and control.

8.
Vet Res ; 54(1): 58, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438783

RESUMO

African swine fever (ASF), caused by ASF virus (ASFV) infection, poses a huge threat to the pork industry owing to ineffective preventive and control measures. Hence, there is an urgent need to develop strategies, including antiviral drugs targeting ASFV, for preventing ASFV spread. This study aimed to identify novel compounds with anti-ASFV activity. To this end, we screened a small chemical library of 102 compounds, among which the natural flavonoid dihydromyricetin (DHM) exhibited the most potent anti-ASFV activity. DHM treatment inhibited ASFV replication in a dose- and time-dependent manner. Furthermore, it inhibited porcine reproductive and respiratory syndrome virus and swine influenza virus replication, which suggested that DHM exerts broad-spectrum antiviral effects. Mechanistically, DHM treatment inhibited ASFV replication in various ways in the time-to-addition assay, including pre-, co-, and post-treatment. Moreover, DHM treatment reduced the levels of ASFV-induced inflammatory mediators by regulating the TLR4/MyD88/MAPK/NF-κB signaling pathway. Meanwhile, DHM treatment reduced the ASFV-induced accumulation of reactive oxygen species, further minimizing pyroptosis by inhibiting the ASFV-induced NLRP3 inflammasome activation. Interestingly, the effects of DHM on ASFV were partly reversed by treatment with polyphyllin VI (a pyroptosis agonist) and RS 09 TFA (a TLR4 agonist), suggesting that DHM inhibits pyroptosis by regulating TLR4 signaling. Furthermore, targeting TLR4 with resatorvid (a specific inhibitor of TLR4) and small interfering RNA against TLR4 impaired ASFV replication. Taken together, these results reveal the anti-ASFV activity of DHM and the underlying mechanism of action, providing a potential compound for developing antiviral drugs targeting ASFV.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Doenças dos Suínos , Animais , Suínos , Receptor 4 Toll-Like , Piroptose , Antivirais/farmacologia
9.
Vet Microbiol ; 284: 109794, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37295229

RESUMO

Africa swine fever (ASF) is a highly pathogenic contagion caused by African swine fever virus (ASFV), which not only affects the development of domestic pig industry, but also causes huge losses to the world agricultural economy. Vaccine development targeting ASFV remains elusive, which leads to severe difficulties in disease prevention and control. Emodin (EM) and rhapontigenin (RHAG), which are extracted from the dried rhizome of Polygonum knotweed, have various biological properties such as anti-neoplastic and anti-bacterial activities, but no studies have reported that they have anti-ASFV effects. This study discovered that EM and RHAG at different concentrations had a significant dose-dependent inhibitory effect on the ASFV GZ201801 strain in porcine alveolar macrophages (PAMs), and at the specified concentration, EM and RHAG showed continuous inhibition at 24 h, 48 h and 72 h. Not only did they strongly impact virion attachment and internalization, but also inhibit the early stages of ASFV replication. Further research proved that the expression level of Rab 7 protein was reduced by EM and RHAG, and treatments with EM and RHAG induced the accumulation of free cholesterol in endosomes and inhibited endosomal acidification, which prevented the virus from escaping and shelling from late endosomes. This study summarized the application of EM and RHAG in inhibiting ASFV replication in-vitro. Similarly, EM and RHAG targeted Rab 7 in the viral endocytosis pathway, inhibited viral infection, and induced the accumulation of cholesterol in the endosomes and the acidification of the endosomes to inhibit uncoating. A reference could be made to the results of this study when developing antiviral drugs and vaccines.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Emodina , Doenças dos Suínos , Suínos , Animais , Vírus da Febre Suína Africana/fisiologia , Internalização do Vírus , Emodina/metabolismo , Emodina/farmacologia , Sus scrofa , Colesterol/metabolismo , Replicação Viral
10.
Virus Res ; 334: 199159, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37385349

RESUMO

African swine fever virus (ASFV) is the etiological agent of African swine fever (ASF), which is one of the most harmful swine diseases in the pig industry because of its nearly 100% mortality rate in domestic pigs and results in incalculable economic loss. Ever since ASF was initially reported, scientists have worked to develop anti-ASF vaccines; however, currently no clinically effective vaccine for ASF is available. Therefore, the development of novel measures to prevent ASFV infection and transmission is essential. In this study, we aimed to investigate the anti-ASF activity of theaflavin (TF), a natural compound mainly isolated from black tea. We found that TF potently inhibited ASFV replication at non-cytotoxic concentrations ex vivo in primary porcine alveolar macrophages (PAMs). Mechanistically, we found that TF inhibited ASFV replication by acting on cells rather than interacting directly with ASFV to inhibit viral replication. Further, we found that TF upregulated the AMPK (5'-AMP-activated protein kinase) signaling pathway in ASFV-infected and uninfected cells, and treatment with the AMPK agonist MK8722 upregulated the AMPK signaling pathway and inhibited ASFV proliferation in a dose-dependent manner. Notably, the effects of TF on AMPK activation and ASFV inhibition were partially reversed by the AMPK inhibitor dorsomorphin. In addition, we found that TF down-regulated the expression of genes related to lipid synthesis and decreased the intracellular accumulation of total cholesterol and total triglycerides in ASFV-infected cells, suggesting that TF may inhibit ASFV replication by disrupting lipid metabolism. In summary, our results demonstrated that TF is an ASFV infection inhibitor and revealed the mechanism by which ASFV replication is inhibited, providing a novel mechanism and potential lead compound for the development of anti-ASFV drugs.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/fisiologia , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Metabolismo dos Lipídeos , Sus scrofa , Replicação Viral , Transdução de Sinais
11.
Virus Res ; 333: 199139, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37217033

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is a severe respiratory disease caused by porcine reproductive and respiratory syndrome virus (PRRSV) that can lead to the abortion of pregnant sows and decreased boar semen quality. However, the mechanisms of PRRSV replication in the host have not yet been fully elucidated. As lipid metabolism and lipid droplets (LDs) have been reported to play important roles in the replication of various viruses, we aimed to explore the mechanisms through which LDs affect PRRSV replication. Laser confocal and transmission electron microscopy revealed that PRRSV infection promoted intracellular LD accumulation, which was significantly reduced by treatment with the NF-κB signaling pathway inhibitors BAY11-7082 and metformin hydrochloride (MH). In addition, treatment with a DGAT1 inhibitor significantly reduced the protein expression of Phosphorylated NF-ΚB P65and PIκB and the transcription of IL-1ß and IL-8 in the NF-κB signaling pathway. Furthermore, we showed that the reduction of the NF-κB signaling pathway and LDs significantly reduced PRRSV replication. Together, the findings of this study suggest a novel mechanism through which PRRSV regulates the NF-κB signaling pathway to increase LD accumulation and promote viral replication. Moreover, we demonstrated that both BAY11-7082 and MH can reduce PRRSV replication by reducing the NF-κB signaling pathway and LD accumulation. This study lays a theoretical foundation for research on the mechanism of PRRS prevention and control, as well as the research and development of antiviral drugs.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos , Animais , Masculino , Feminino , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , NF-kappa B/metabolismo , Gotículas Lipídicas/metabolismo , Análise do Sêmen , Linhagem Celular , Replicação Viral , Lipídeos
12.
Vet Microbiol ; 281: 109741, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37087878

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is an RNA virus belonging to the Arteriviridae family. Currently, the strain has undergone numerous mutations, bringing massive losses to the swine industry worldwide. Despite several studies had been conducted on PRRSV, the molecular mechanisms by which it causes infection remain unclear. Proliferating cell nuclear antigen (PCNA) is a sign of DNA damage and it participates in DNA replication and repair. Therefore, in this study, we investigated the potential role of PCNA in PRRSV infection. We observed that PCNA expression was stable after PRRSV infection in vitro; however, PCNA was translocated from the nucleus to the cytoplasm. Notably, we found the redistribution of PCNA from the nucleus to the cytoplasm in cells transfected with the N protein. PCNA silencing inhibited PRRSV replication and the synthesis of PRRSV shorter subgenomic RNA (sgmRNA) and genomic RNA (gRNA), while PCNA overexpression promoted virus replication and PRRSV shorter sgmRNA and gRNA synthesis. By performing immunoprecipitation and immunofluorescence colocalization, we confirmed that PCNA interacted with replication-related proteins, namely NSP9, NSP12, and N, but not with NSP10 and NSP11. Domain III of the N protein (41-72 aa) interacted with the IDCL domain of PCNA (118-135 aa). Therefore, we propose cytoplasmic transport of PCNA and its subsequent influence on PRRSV RNA synthesis could be a viral strategy for manipulating cell function, thus PCNA is a potential target to prevent and control PRRSV infection.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Animais , Genoma Viral , Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , RNA , Suínos , Doenças dos Suínos/genética , Proteínas não Estruturais Virais/genética , Replicação Viral/genética , RNA Subgenômico/genética
13.
J Virol ; 97(4): e0026423, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36943051

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) causes respiratory disease in pigs of all ages and reproductive failure in sows, resulting in great economic losses to the swine industry. In this work, we identified the interaction between PSMB4 and PRRSV Nsp1α by yeast two-hybrid screening. The PSMB4-Nsp1α interaction was further confirmed by coimmunoprecipitation, glutathione S-transferase (GST) pulldown, and laser confocal experiments. The PCPα domain (amino acids 66 to 166) of Nsp1α and the C-terminal domain (amino acids 250 to 264) of PSMB4 were shown to be critical for the PSMB4-Nsp1α interaction. PSMB4 overexpression reduced PRRSV replication, whereas PSMB4 knockdown elicited opposing effects. Mechanistically, PSMB4 targeted K169 in Nsp1α for K63-linked ubiquitination and targeted Nsp1α for autolysosomal degradation by interacting with LC3 to enhance the activation of the lysosomal pathway. Meanwhile, we found that PSMB4 activated the NF-κB signaling pathway to produce type I interferons by downregulating the expression of IκBα and p-IκBα. In conclusion, our data revealed a new mechanism of PSMB4-mediated restriction of PRRSV replication, whereby PSMB4 was found to induce Nsp1α degradation and type I interferon expression, in order to impede the replication of PRRSV. IMPORTANCE In the swine industry, PRRSV is a continuous threat, and the current vaccines are not effective enough to block it. This study determined that PSMB4 plays an antiviral role against PRRSV. PSMB4 was found to interact with PRRSV Nsp1α, mediate K63-linked ubiquitination of Nsp1α at K169, and thus trigger its degradation via the lysosomal pathway. Additionally, PSMB4 activated the NF-κB signaling pathway to produce type I interferons by downregulating the expression of IκBα and p-IκBα. This study extends our understanding of the proteasome subunit PSMB4 against PRRSV replication and will contribute to the development of new antiviral strategies.


Assuntos
Interferon Tipo I , Vírus da Síndrome Respiratória e Reprodutiva Suína , Complexo de Endopeptidases do Proteassoma , Proteínas não Estruturais Virais , Expressão Gênica/imunologia , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Interferon beta/genética , Lisossomos/metabolismo , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/imunologia , Domínios Proteicos , Proteólise , Suínos , Ubiquitinação , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética , Animais
14.
Front Microbiol ; 13: 980862, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246286

RESUMO

Senecavirus A (SVA) is a member of the genus Senecavirus in the family Picornaviridae that infects pigs and shows symptoms similar to foot and mouth diseases and other vesicular diseases. It is difficult to prevent, thus, causing tremendous economic loss to the pig industry. However, the global transmission routes of SVA and its natural origins remain unclear. In this study, we processed representative SVA sequences from the GenBank database along with 10 newly isolated SVA strains from the field samples collected from our lab to explore the origins, population characteristics, and transmission patterns of SVA. The SVA strains were firstly systematically divided into eight clades including Clade I-VII and Clade Ancestor based on the maximum likelihood phylogenetic inference. Phylogeographic and phylodynamics analysis within the Bayesian statistical framework revealed that SVA originated in the United States in the 1980s and afterward spread to different countries and regions. Our analysis of viral transmission routes also revealed its historical spread from the United States and the risk of the global virus prevalence. Overall, our study provided a comprehensive assessment of the phylogenetic characteristics, origins, history, and geographical evolution of SVA on a global scale, unlocking insights into developing efficient disease management strategies.

15.
Front Vet Sci ; 9: 978243, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061106

RESUMO

African swine fever (ASF) outbreak have caused tremendous economic loss to the pig industry in China since its emergence in August 2018. Previous studies revealed that many published sequences are not suitable for detailed analyses due to the lack of data regarding quality parameters and methodology, and outdated annotations. Thus, high-quality genomes of highly pathogenic strains that can be used as references for early Chinese ASF outbreaks are still lacking, and little is known about the features of intra-host variants of ASF virus (ASFV). In this study, a full genome sequencing of clinical samples from the first ASF outbreak in Guangdong in 2018 was performed using MGI (MGI Tech Co., Ltd., Shenzhen, China) and Nanopore sequencing platforms, followed by Sanger sequencing to verify the variations. With 22 sequencing corrections, we obtained a high-quality genome of one of the earliest virulent isolates, GZ201801_2. After proofreading, we improved (add or modify) the annotations of this isolate using the whole genome alignment with Georgia 2007/1. Based on the complete genome sequence, we constructed the methylation profiles of early ASFV strains in China and predicted the potential 5mC and 6mA methylation sites, which are likely involved in metabolism, transcription, and replication. Additionally, the intra-host single nucleotide variant distribution and mutant allele frequency in the clinical samples of early strain were determined for the first time and found a strong preference for A and T substitution mutation, non-synonymous mutations, and mutations that resulted in amino acid substitutions into Lysine. In conclusion, this study provides a high-quality genome sequence, updated genome annotation, methylation profile, and mutation spectrum of early ASFV strains in China, thereby providing a reference basis for further studies on the evolution, transmission, and virulence of ASFV.

16.
Microbiol Spectr ; 10(5): e0215522, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36000903

RESUMO

We reported a novel African swine fever virus (ASFV) strain that had a three-large-fragment deletion and unique variations in genome. This isolate displayed a nonhemadsorbing phenotype and had homogeneous proliferation compared with the wild-type ASFV strain. Our findings highlighted the urgent need for further investigation of ASFV variations in China. IMPORTANCE African swine fever virus (ASFV) has been circulating in China for 5 years, and low virulent strains with changes in the genome have been reported. Nevertheless, there is still a lack of knowledge about the epidemic strains at the whole-genome level. This study reported a novel strain and further analyzed its genomic and biological characteristics. In addition, our study also suggests that whole-genome sequencing plays a key role in the epidemiology investigation of ASFV variations.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Febre Suína Africana/epidemiologia , Proteínas Virais/genética , Virulência , Fenótipo
18.
Virology ; 573: 39-49, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35714457

RESUMO

In this study, we characterized an emerging porcine reproductive and respiratory syndrome virus (PRRSV) isolate UIL21-0712, which is a lineage 1C variant with ORF5 restriction fragment length polymorphism (RFLP) cutting pattern of 1-4-4. The UIL21-0712 genome sequence has 85.3% nucleotide identity with the prototypic PRRSV-2 strain VR2332. The nsp2 region is the most variable, and the -2/-1 programmed ribosome frameshifting (PRF) signal therein is distinct from historical PRRSV strains. Analysis of PRRSV sequences in GenBank revealed that the majority of the emerging PRRSV variants contain substitutions that disrupt the -1 PRF stop codon to generate a nsp2N protein with a C-terminal extension. Two of the -1 PRF stop codon variant patterns were identified to be predominantly circulating in the field. They demonstrated higher growth kinetics than the other variants, suggesting that the most dominant -1 PRF stop codon variant patterns may provide enhanced growth fitness for the virus.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Sequência de Aminoácidos , Animais , Códon de Terminação , Mudança da Fase de Leitura do Gene Ribossômico , Variação Genética , Filogenia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Suínos , Estados Unidos
19.
Transbound Emerg Dis ; 69(5): e2530-e2540, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35569128

RESUMO

The Porcine reproductive and respiratory syndrome virus (PRRSV), a single (+) RNA virus, is characterized by high genome variability and constant evolution. Owing to increasingly complex mutations, there is a growing difficulty in accessing the whole genome. Additionally, there is limited knowledge on PRRSV intra-host nucleotide variants, which may reflect the complex viral-host dynamics. Here, we performed next-generation sequencing on four clinical lung tissues to reveal the genomic diversity and highlight virus-host interactions. The complete genomes of the HN0713 and GDYJ1224 strains shared 90.7% and 91.3% homology with the lineage 1 strain NADC30, respectively, while the GDGZ0408 and GDHY0425 strains shared 92.0% and 91.6% homology with the JXA1 strain, respectively. Recombination analysis showed that the ORF5-7 genes of the GDGZ0408 and GDHY0425 strains, whose complete genomes belong to lineage 8.7 based on the phylogenetic tree, are both recombined with lineage 3 strains. Furthermore, nsp3, nsp10-12, ORF2 genes and a part of the 3'-UTR of the GDHY0425 strain were provided by the lineage 5.1 strain. Two lineage 1 strains (GDYJ1224 and HN0713) were produced by a recombination of lineages 8.7 and 1. Additionally, the lineage 3 strain was associated with the recombinant HN0713 strain. We determined the intra-host single nucleotide variant frequencies and found more than 200 sites at a frequency of >1% in all samples. GDGZ0408 with parts of the nsp9 and nsp10 genes of HP-PRRSV lineage 8.7 presented more genetically diverse populations than others, indicating that lineage 8.7 might drive robust intra-host single nucleotide variants (iSNVs). Moreover, in the iSNV pools, nsp2 and ORF2a presented the highest mutation dynamic. Overall, this study provided evidence for the alarmingly increasing recombination and ever-changing evolutionary dynamics of PRRSV, and revealed the potential causes of vaccine escape, providing a novel insight into the nucleotide variant population in clinical samples.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Animais , China/epidemiologia , Variação Genética , Genoma Viral/genética , Genômica , Nucleotídeos , Filogenia , Síndrome Respiratória e Reprodutiva Suína/epidemiologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Recombinação Genética , Suínos , Sequenciamento Completo do Genoma/veterinária
20.
Front Vet Sci ; 9: 886058, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35619609

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) suppresses the innate immune response in the host, reducing and delaying neutralizing antibody production against PRRSV infection and promoting viral infection. Here, we aimed to assess the potential of Panax notoginseng saponins (PNS) for improving the immune response exerted upon PRRSV-2-modified live virus (MLV) vaccine administration. Thirty piglets were randomly divided into six groups. Group 1 piglets were injected with medium 0 days post vaccination (dpv). Group 2 piglets were fed PNS 0-28 dpv. Group 3 and group 4 piglets were administered the JXA1-R vaccine 0 dpv. Group 4 piglets were also fed PNS 0-28 dpv. Group 1-4 piglets were challenged intranasally with the PRRSV JXA1 strain 28 dpv. Group 5 piglets were fed with PNS without challenge. Group 6 piglets served as controls. During the experiment, the samples were collected regularly for 49 days. Compared with group 1 piglets, group 3 piglets showed significantly reduced viremia and clinical scores, and significantly increased average daily gain (ADWG). Compared with group 3 piglets, group 4 piglets showed significantly improved neutralizing antibody titers, IFN-α and IFN-ß mRNA expression, and significantly decreased viremia and viral load in the lungs and lymph nodes, but did not demonstrate any further improvement in PRRSV-specific antibody titer, rectal temperature, ADWG, or clinical scores. PNS upregulates neutralizing antibodies against PRRSV-2 and enhances the expression of IFN-α and IFN-ß, which may reduce PRRSV viremia upon PRRSV-2 MLV vaccine administration. PNS may serve as an effective immunomodulator for boosting the immune defense against PRRSV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA