Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
J Biol Chem ; : 107405, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38788853

RESUMO

Exogenous omega-3 fatty acids, particularly docosahexaenoic acid (DHA), have shown to exert beneficial effects on nonalcoholic fatty liver disease (NAFLD), which is characterized by the excessive accumulation of lipids and chronic injury in the liver. However, the effect of endogenous DHA biosynthesis on the lipid homeostasis of liver is poorly understood. In this study, we used a DHA biosynthesis-deficient zebrafish model, elovl2 mutant, to explore the effect of endogenously biosynthesized DHA on hepatic lipid homeostasis. We found the pathways of lipogenesis and lipid uptake were strongly activated, while the pathways of lipid oxidation and lipid transport were inhibited in the liver of elovl2 mutants, leading to lipid droplet accumulation in the mutant hepatocytes and NAFLD. Furthermore, the elovl2 mutant hepatocytes exhibited disrupted mitochondrial structure and function, activated endoplasmic reticulum (ER) stress, and hepatic injury. We further unveiled that the hepatic cell death and injury was mainly mediated by ferroptosis, rather than apoptosis, in elovl2 mutants. Elevating DHA content in elovl2 mutants, either through introduction of an omega-3 desaturase (fat1) transgene or feeding with a DHA-rich diet, could strongly alleviate NAFLD features and ferroptosis-mediated hepatic injury. Together, our study elucidates the essential role of endogenous DHA biosynthesis in maintaining hepatic lipid homeostasis and liver health, highlighting that DHA deficiency can lead to NAFLD and ferroptosis-mediated hepatic injury.

3.
Zool Res ; 45(1): 176-188, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38199972

RESUMO

Omega-3 polyunsaturated fatty acids (n-3 PUFAs), particularly docosahexaenoic acid (22:6n-3, DHA), play crucial roles in the reproductive health of vertebrates, including humans. Nevertheless, the underlying mechanism related to this phenomenon remains largely unknown. In this study, we employed two zebrafish genetic models, i.e., elovl2 -/- mutant as an endogenous DHA-deficient model and fat1 (omega-3 desaturase encoding gene) transgenic zebrafish as an endogenous DHA-rich model, to investigate the effects of DHA on oocyte maturation and quality. Results show that the elovl2 -/- mutants had much lower fecundity and poorer oocyte quality than the wild-type controls, while the fat1 zebrafish had higher fecundity and better oocyte quality than wild-type controls. DHA deficiency in elovl2 -/- embryos led to defects in egg activation, poor microtubule stability, and reduced pregnenolone levels. Further study revealed that DHA promoted pregnenolone synthesis by enhancing transcription of cyp11a1, which encodes the cholesterol side-chain cleavage enzyme, thereby stabilizing microtubule assembly during oogenesis. In turn, the hypothalamic-pituitary-gonadal axis was enhanced by DHA. In conclusion, using two unique genetic models, our findings demonstrate that endogenously synthesized DHA promotes oocyte maturation and quality by promoting pregnenolone production via transcriptional regulation of cyp11a1.


Assuntos
Ácidos Docosa-Hexaenoicos , Peixe-Zebra , Animais , Humanos , Enzima de Clivagem da Cadeia Lateral do Colesterol , Oogênese/genética , Oócitos
4.
Nat Commun ; 14(1): 7918, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097571

RESUMO

The combination of genome editing and primordial germ cell (PGC) transplantation has enormous significance in the study of developmental biology and genetic breeding, despite its low efficiency due to limited number of donor PGCs. Here, we employ a combination of germplasm factors to convert blastoderm cells into induced PGCs (iPGCs) in zebrafish and obtain functional gametes either through iPGC transplantation or via the single blastomere overexpression of germplasm factors. Zebrafish-derived germplasm factors convert blastula cells of Gobiocypris rarus into iPGCs, and Gobiocypris rarus spermatozoa can be produced by iPGC-transplanted zebrafish. Moreover, the combination of genome knock-in and iPGC transplantation perfectly resolves the contradiction between high knock-in efficiency and early lethality during embryonic stages and greatly improves the efficiency of genome knock-in. Together, we present an efficient method for generating PGCs in a teleost, a technique that will have a strong impact in basic research and aquaculture.


Assuntos
Blastômeros , Peixe-Zebra , Masculino , Animais , Peixe-Zebra/genética , Blástula , Células Germinativas
5.
Bioengineering (Basel) ; 10(9)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37760175

RESUMO

Astaxanthin is a fascinating molecule with powerful antioxidant activity, synthesized exclusively by specific microorganisms and higher plants. To expand astaxanthin production, numerous studies have employed metabolic engineering to introduce and optimize astaxanthin biosynthetic pathways in microorganisms and plant hosts. Here, we report the metabolic engineering of animal cells in vitro to biosynthesize astaxanthin. This was accomplished through a two-step study to introduce the entire astaxanthin pathway into human embryonic kidney cells (HEK293T). First, we introduced the astaxanthin biosynthesis sub-pathway (Ast subp) using several genes encoding ß-carotene ketolase and ß-carotene hydroxylase enzymes to synthesize astaxanthin directly from ß-carotene. Next, we introduced a ß-carotene biosynthesis sub-pathway (ß-Car subp) with selected genes involved in Ast subp to synthesize astaxanthin from geranylgeranyl diphosphate (GGPP). As a result, we unprecedentedly enabled HEK293T cells to biosynthesize free astaxanthin from GGPP with a concentration of 41.86 µg/g dry weight (DW), which represented 66.19% of the total ketocarotenoids (63.24 µg/g DW). Through optimization steps using critical factors in the astaxanthin biosynthetic process, a remarkable 4.14-fold increase in total ketocarotenoids (262.10 µg/g DW) was achieved, with astaxanthin constituting over 88.82%. This pioneering study holds significant implications for transgenic animals, potentially revolutionizing the global demand for astaxanthin, particularly within the aquaculture sector.

6.
Cell Death Discov ; 9(1): 227, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407577

RESUMO

Food digestion requires the cooperation of different digestive organs. The differentiation of digestive organs is crucial for larvae to start feeding. Therefore, during digestive organogenesis, cell identity and the tissue morphogenesis must be tightly coordinated but how this is accomplished is poorly understood. Here, we demonstrate that WD repeat domain 5 (Wdr5)-mediated H3K4 tri-methylation (H3K4me3) coordinately regulates cell differentiation, proliferation and apoptosis in zebrafish organogenesis of three major digestive organs including intestine, liver, and exocrine pancreas. During zebrafish digestive organogenesis, some of cells in these organ primordia usually undergo differentiation without apoptotic activity and gradually reduce their proliferation capacity. In contrast, cells in the three digestive organs of wdr5-/- mutant embryos retain progenitor-like status with high proliferation rates, and undergo apoptosis. Wdr5 is a core member of COMPASS complex to implement H3K4me3 and its expression is enriched in digestive organs from 2 days post-fertilization (dpf). Further analysis reveals that lack of differentiation gene expression is due to significant decreases of H3K4me3 around the transcriptional start sites of these genes; this histone modification also reduces the proliferation capacity in differentiated cells by increasing the expression of apc to promote the degradation of ß-Catenin; in addition, H3K4me3 promotes the expression of anti-apoptotic genes such as xiap-like, which modulates p53 activity to guarantee differentiated cell survival. Thus, our findings have discovered a common molecular mechanism for cell fate determination in different digestive organs during organogenesis, and also provided insights to understand mechanistic basis of human diseases in these digestive organs.

7.
Chem Commun (Camb) ; 59(44): 6710-6713, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37191074

RESUMO

A new Fe-substituted TiFeNb10O29-δ (TFNO) anode is proposed. TFNO possesses a defective and polycrystalline ReO3 Roth-Wadsley shear structure with a slightly larger lattice volume. Electrochemical behavior results and density functional theory (DFT) calculations show that TFNO can facilitate the kinetics of electron/Li+ transportation and demonstrates pseudocapacitive behavior. Consequently, TFNO exhibits superior high rate capacity and cycling stability compared to pristine TNO, offering 100 mA h g-1 at an ultrahigh rate of 50C and a high capacity retention of 86.7% over 1000 cycles at 10C. This work reveals that TFNO could be a promising anode material for fast-charging, stable, and safe LIBs.

8.
Front Endocrinol (Lausanne) ; 14: 1044318, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077350

RESUMO

Image-based identification and quantification of different types of spermatogenic cells is of great importance, not only for reproductive studies but also for genetic breeding. Here, we have developed antibodies against spermatogenesis-related proteins in zebrafish (Danio rerio), including Ddx4, Piwil1, Sycp3, and Pcna, and a high-throughput method for immunofluorescence analysis of zebrafish testicular sections. By immunofluorescence analysis of zebrafish testes, our results demonstrate that the expression of Ddx4 decreases progressively during spermatogenesis, Piwil1 is strongly expressed in type A spermatogonia and moderately expressed in type B spermatogonia, and Sycp3 has distinct expression patterns in different subtypes of spermatocytes. Additionally, we observed polar expression of Sycp3 and Pcna in primary spermatocytes at the leptotene stage. By a triple staining of Ddx4, Sycp3, and Pcna, different types/subtypes of spermatogenic cells were easily characterized. We further demonstrated the practicality of our antibodies in other fish species, including Chinese rare minnow (Gobiocypris rarus), common carp (Cyprinus carpio), blunt snout bream (Megalobrama amblycephala), rice field eel (Monopterus albus) and grass carp (Ctenopharyngodon idella). Finally, we proposed an integrated criterion for identifying different types/subtypes of spermatogenic cells in zebrafish and other fishes using this high-throughput immunofluorescence approach based on these antibodies. Therefore, our study provides a simple, practical, and efficient tool for the study of spermatogenesis in fish species.


Assuntos
Carpas , Testículo , Masculino , Animais , Testículo/metabolismo , Peixe-Zebra , Antígeno Nuclear de Célula em Proliferação/metabolismo , Anticorpos/metabolismo , Imunofluorescência
9.
Clin Genet ; 103(5): 529-539, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36541162

RESUMO

Thymic epithelial tumors (TETs) are rare mediastinal tumors whose tumorigenesis mechanism is poorly understood. Characterization of molecular alterations in TETs may contribute to a better understanding of tumorigenesis and prognosis. Hybrid capture-based next-generation sequencing was performed on tumor tissues from 47 TETs (39 thymomas and 8 thymic carcinomas) to detect mutations in 315 tumor-associated genes. In total, 178 nonsynonymous mutations were identified, with a median of 3.79 per tumor in 47 TETs. Higher tumor mutation burden (TMB) level was more common in older TET patients, and significantly associated with the more advanced pathological type, especially in thymic carcinomas (TC) patients. The gene mutation profiles of B1-3, A/AB, and TC patients varied greatly. In the actionable mutations analysis, we found 32 actionable mutations in 24 genes. Among them, NFKBIA and TP53 mutations was the most frequently, which were only identified in TCs. Additionally, TCGA database analysis found that the expression of NFKBIA mRNA in the TCs were significantly higher than thymomas. TET patients with high NFKBIA expression had shorter overall survival compared with patients with low/medium NFKBIA expression, thus providing insights to consider NFKBIA as a potential prognosis biomarker and therapeutic target in TETs.


Assuntos
Neoplasias Epiteliais e Glandulares , Timoma , Neoplasias do Timo , Humanos , Idoso , Timoma/genética , Timoma/patologia , Neoplasias do Timo/genética , Neoplasias do Timo/tratamento farmacológico , Neoplasias do Timo/patologia , Neoplasias Epiteliais e Glandulares/genética , Prognóstico , Carcinogênese , Genômica
10.
Zool Res ; 44(1): 63-77, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36317480

RESUMO

Stearyl coenzyme A desaturase (SCD), also known as delta-9 desaturase, catalyzes the rate-limiting step in the formation of monounsaturated fatty acids. In mammals, depletion or inhibition of SCD activity generally leads to a decrease in triglycerides and cholesteryl esters. However, the endogenous role of scd in teleost fish remains unknown. Here, we generated a zebrafish scd mutant (scd-/-) to elucidate the role of scd in lipid metabolism and sexual development. Gas chromatography-mass spectrometry (GC-MS) showed that the scd-/- mutants had increased levels of saturated fatty acids C16:0 and C18:0, and decreased levels of monounsaturated fatty acids C16:1 and C18:1. The mutant fish displayed a short stature and an enlarged abdomen during development. Unlike Scd-/- mammals, the scd-/- zebrafish showed significantly increased fat accumulation in the whole body, especially in the liver, leading to hepatic mitochondrial dysfunction and severe cell apoptosis. Mechanistically, srebf1, a gene encoding a transcriptional activator related to adipogenesis, acc1 and acaca, genes involved in fatty acid synthesis, and dgat2, a key gene involved in triglyceride synthesis, were significantly upregulated in mutant livers to activate fatty acid biosynthesis and adipogenesis. The scd-/- males exhibited defective natural mating behavior due to defective genital papillae but possessed functional mature sperm. All defects in the scd-/- mutants could be rescued by ubiquitous transgenic overexpression of scd. In conclusion, our study demonstrates that scd is indispensable for maintaining lipid homeostasis and development of secondary sexual characteristics in zebrafish.


Assuntos
Estearoil-CoA Dessaturase , Peixe-Zebra , Masculino , Animais , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Sêmen/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Ácidos Graxos/metabolismo , Mamíferos
11.
Development ; 149(24)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36533583

RESUMO

Many maternal mRNAs are translationally repressed during oocyte development and spatio-temporally activated during early embryogenesis, which is crucial for oocyte and early embryo development. By analyzing maternal mutants of nanog (Mnanog) in zebrafish, we demonstrated that Nanog tightly controls translation of maternal mRNA during oogenesis via transcriptional repression of eukaryotic translation elongation factor 1 alpha 1, like 2 (eef1a1l2). Loss of maternal Nanog led to defects of egg maturation, increased endoplasmic reticulum stress, and an activated unfold protein response, which was caused by elevated translational activity. We further demonstrated that Nanog, as a transcriptional repressor, represses the transcription of eefl1a1l2 by directly binding to the eef1a1l2 promoter in oocytes. More importantly, depletion of eef1a1l2 in nanog mutant females effectively rescued the elevated translational activity in oocytes, oogenesis defects and embryonic defects of Mnanog embryos. Thus, our study demonstrates that maternal Nanog regulates oogenesis and early embryogenesis through translational control of maternal mRNA via a mechanism whereby Nanog acts as a transcriptional repressor to suppress transcription of eef1a1l2.


Assuntos
RNA Mensageiro Estocado , Peixe-Zebra , Animais , Feminino , RNA Mensageiro Estocado/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Oogênese/genética , Desenvolvimento Embrionário/genética , Oócitos/metabolismo , Biossíntese de Proteínas , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
12.
Adv Sci (Weinh) ; 9(36): e2203631, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36257818

RESUMO

Maintenance and differentiation of germline stem and progenitor cells (GSPCs) is important for sexual reproduction. Here, the authors identify zebrafish pld6 as a novel germline-specific gene by cross-analyzing different RNA sequencing results, and find that pld6 knockout mutants develop exclusively into infertile males. In pld6 mutants, GSPCs fail to differentiate and undergo apoptosis, leading to masculinization and infertility. Mitochondrial fusion in pld6-depleted GSPCs is severely impaired, and the mutants exhibit defects in piRNA biogenesis and transposon suppression. Overall, this work uncovers zebrafish Pld6 as a novel germline-specific regulator of mitochondrial fusion, and highlights its essential role in the maintenance and differentiation of GSPCs as well as gonadal development and gametogenesis.


Assuntos
Dinâmica Mitocondrial , Peixe-Zebra , Masculino , Animais , Dinâmica Mitocondrial/genética , Células Germinativas , Diferenciação Celular/genética , Células-Tronco
13.
J Mater Chem B ; 10(38): 7732-7743, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36069532

RESUMO

The delayed transition of macrophages (MΦs) from pro-inflammatory M1 to the pro-healing M2 state on implant surfaces is one of the most important reasons for poor osseointegration. This work reports the construction of closely packed nanopores with a small diameter on the micropitted titanium (Ti) surface by two-step acid etching to promote the M1-to-M2 transition of MΦs and pays special attention to the potential mechanisms by which the nanopores decorating the micropits exert immunomodulatory effects. The results show that the structure composed of hybrid nanopores (10-25 nm) and micropits (5-15 µm) can be produced on the Ti surface by a two-step acid etching process. Compared with the unitary micropits, the micropit/nanopore surface could facilitate the switch of MΦs from the pro-inflammatory M1 to the pro-healing M2 phenotype. RNA sequencing reveals that the MAPK, PI3K-AKT and C-type lectin signaling pathways play key roles in the micro/nano-structure-mediated transition. In addition, the micro/nano-structured surface down-regulated CYP1A2 expression, reducing the generation of mitochondrial ROS, in turn restraining the oxidative stress and further attenuating inflammation. This work provides novel insights into the underlying mechanisms of immunomodulation by the nano-structure-decorated micro-structures on the Ti surface, which is significant for designing the surface of orthopedic implants from the perspective of immunomodulation.


Assuntos
Nanoporos , Titânio , Citocromo P-450 CYP1A2/metabolismo , Imunidade , Lectinas Tipo C/metabolismo , Macrófagos , Osteoblastos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície , Titânio/química
14.
Front Immunol ; 13: 938326, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091072

RESUMO

Organisms are colonized by microorganism communities and play a pivotal role in host function by influencing physiology and development. In mammals, bacterial community may alter gonadal maturation and drive sex-specific differences in gene expression and metabolism. However, bacterial microbiota diversity in the gonads of early vertebrates has not been fully elucidated. Here, we focused on the swamp eel (Monopterus albus), which naturally undergoes sex reversal, and systematically analyzed the bacterial microbiota profiles between females and males using 16S rRNA gene sequences. Specifically, the microbial abundance and community diversity of gonads in males were higher than in females. Although Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria were characterized as the dominating phyla in ovary and testis, the relative abundance of Firmicutes was significantly higher in males than females. Detailed analysis of the microbial community revealed that Bacilli were the dominant bacteria in ovaries and Clostridium in testes of M. albus. More importantly, we proposed that differences in the microbial composition and distribution between ovaries and testes may be linked to functional categories in M. albus, especially metabolism. These findings represent a unique resource of bacterial community in gonads to facilitate future research about the mechanism of how microbiota influence sex-specific differences and sex reversal in vertebrates.


Assuntos
Microbiota , Smegmamorpha , Animais , Bactérias/metabolismo , Feminino , Masculino , Mamíferos/genética , Ovário , RNA Ribossômico 16S/genética , Smegmamorpha/genética
15.
Int J Oral Sci ; 14(1): 43, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008388

RESUMO

Genome-wide association studies (GWASs) are the most widely used method to identify genetic risk loci associated with orofacial clefts (OFC). However, despite the increasing size of cohort, GWASs are still insufficient to detect all the heritability, suggesting there are more associations under the current stringent statistical threshold. In this study, we obtained an integrated epigenomic dataset based on the chromatin conformation of a human oral epithelial cell line (HIOEC) using RNA-seq, ATAC-seq, H3K27ac ChIP-seq, and DLO Hi-C. Presumably, this epigenomic dataset could reveal the missing functional variants located in the oral epithelial cell active enhancers/promoters along with their risk target genes, despite relatively less-stringent statistical association with OFC. Taken a non-syndromic cleft palate only (NSCPO) GWAS data of the Chinese Han population as an example, 3664 SNPs that cannot reach the strict significance threshold were subjected to this functional identification pipeline. In total, 254 potential risk SNPs residing in active cis-regulatory elements interacting with 1 718 promoters of oral epithelium-expressed genes were screened. Gapped k-mer machine learning based on enhancers interacting with epithelium-expressed genes along with in vivo and in vitro reporter assays were employed as functional validation. Among all the potential SNPs, we chose and confirmed that the risk alleles of rs560789 and rs174570 reduced the epithelial-specific enhancer activity by preventing the binding of transcription factors related to epithelial development. In summary, we established chromatin conformation datasets of human oral epithelial cells and provided a framework for testing and understanding how regulatory variants impart risk for clefts.


Assuntos
Fenda Labial , Fissura Palatina , Cromatina , Fenda Labial/genética , Fissura Palatina/genética , Epitélio , Estudo de Associação Genômica Ampla , Humanos
16.
Anticancer Drugs ; 33(9): 966-969, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35946511

RESUMO

Osimertinib, an orally administered third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, is widely approved for the first-line and second-line treatment of advanced non-small-cell lung cancer (NSCLC) with EGFR mutations. However, the rapid development of osimertinib resistance renders the unsustainable treatment benefit. Patients with EGFR -mutated NSCLC who develop osimertinib resistance, especially those acquiring relatively rare and 'off-target' resistance mutations, still lack effective therapeutic options for postosimertinib therapy. Herein, we reported a 73-year-old woman diagnosed with T1N3M1 lung adenocarcinoma harboring EGFR L858R mutation, who acquired two GNAS mutations (R201C and R201H) and lost the EGFR L858R mutation after progression on icotinib and osimertinib. The patient was subsequently treated with trametinib and there was no obvious tumor increase. Our study revealed that GNAS R201 can confer the osimertinib resistance in EGFR -positive NSCLC, and present the first report of the prevalence of GNAS R201C and R201H mutants in NSCLC which response to trametinib treatment. Our case suggests that trametinib could be a treatment option in NSCLC patients harboring GNAS -activating mutations.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Acrilamidas , Idoso , Compostos de Anilina/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Cromograninas/genética , Cromograninas/uso terapêutico , Receptores ErbB/genética , Feminino , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/uso terapêutico , Humanos , Indóis , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridonas , Pirimidinas , Pirimidinonas
17.
Biomater Adv ; 138: 212968, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35913245

RESUMO

Bone repair materials with excellent mechanical properties are highly desirable, especially in load-bearing sits. However, the currently used ceramic- and polymer-based ones mainly show poor mechanical properties. Recently, biodegradable metals have attracted extensive attention due to their reliable mechanical strength and degradability. As biodegradable metals, zinc-based materials are promising due to their suitable degradation rate and good biocompatibility. Here, we fabricated biodegradable porous Zn scaffolds with relatively high mechanical properties by vacuum heating-press sintering using NaCl particles as space holders. The microstructure, actual porosity, compressive mechanical properties, in vitro degradation behavior and the vitality of osteoblasts of porous Zn scaffolds were tested and investigated. The results show the porosities of the prepared porous Zn scaffolds are ranging from 11.3 % to 63.3 %, and the pore sizes are similar to the size range of the screened NaCl particles (200-500 µm). Compressive yield strength of 14.2-73.7 MPa and compressive elastic modulus of 1.9-6.7 GPa are shown on porous Zn scaffolds, some of which approach to that of cancellous bone (2-12 MPa and 0.1-5 GPa). Compared to bulk Zn, although the porous structures cause a partial loss of strength, the reliable mechanical properties are still retained. In addition, the porous structures not only greatly increase the degradation rate, but also promote the proliferation of osteoblasts. Based on these results, biodegradable porous Zn scaffolds (porosity in the 40 %-50 %) fabricated by vacuum heating-press sintering method show high application potential for clinical bone repair.


Assuntos
Calefação , Cloreto de Sódio , Teste de Materiais , Vácuo , Zinco/química
18.
Biomaterials ; 288: 121684, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35995624

RESUMO

Osseointegration of implants is a complex physiological process that requires temporal and spatial regulation of immune responses, angiogenesis, and osteogenesis. To achieve efficient and long-term osseointegration, type I collagen (COL1) decorated nanoporous network was developed on titanium substrates via alkali treatment, polydopamine coating, and layer-by-layer (LBL) self-assembly. It was noted that the simple physisorbed COL1 could be easily desorbed from the nanostructured surface, however, multilayer COL1 constructed by polydopamine and LBL self-assembly obscured the nanoporous network of the alkali-treated titanium surfaces. Interestingly, the nanostructured surface covalently immobilized with COL1 (T-ADC) could timely convert macrophages (MΦs) from pro-inflammatory M1 to pro-healing M2 phenotype, generating a beneficial osteoimmune microenvironment and promoting angio/osteo-genesis. RNA sequencing revealed that the nanostructure and COL1 could synergistically activate RhoA/ROCK, PI3K-AKT, and classical MAPK signaling pathways in MΦs to sustain the cell cycle, and trigger autocrine feedback-mediated JAK-STAT and FoxO signaling pathways, which in turn motivated autophagy and oxidative stress resistance and attenuated lipopolysaccharide-induced Toll-like receptor signaling pathway and its downstream NF-κB and JNK/p38 MAPK signaling cascades, leading to the inhibition of inflammation and osteoclastic-related gene expression of MΦs. Simultaneously, T-ADC prominently facilitated angiogenesis of endothelial cells and osteogenesis of osteoblasts as well as their cross-talks, further highlighting synergistically positive effects of the nanostructure and COL1 on osseointegration. In vivo experiments revealed that T-ADC could induce abundant new bone mass and ameliorative osseointegration, corroborating the in vitro results. The study elucidated that the COL1 decorated nanoporous network on titanium surfaces could significantly regulate early inflammatory reaction and subsequent angio/osteo-genesis processes, resulting in favorable osseointegration.


Assuntos
Nanoporos , Osseointegração , Álcalis/farmacologia , Colágeno Tipo I/farmacologia , Células Endoteliais , Imunidade , Imunomodulação , Osteogênese , Fosfatidilinositol 3-Quinases , Propriedades de Superfície , Titânio/química , Titânio/farmacologia
19.
J Mol Cell Biol ; 14(7)2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35981808

RESUMO

Meiosis is essential for evolution and genetic diversity in almost all sexual eukaryotic organisms. The mechanisms of meiotic recombination, such as synapsis, have been extensively investigated. However, it is still unclear whether signals from the cytoplasm or even from outside of the cell can regulate the meiosis process. Cilia are microtubule-based structures that protrude from the cell surface and function as signaling hubs to sense extracellular signals. Here, we reported an unexpected and critical role of cilia during meiotic recombination. During gametogenesis of zebrafish, cilia were specifically present in the prophase stages of both primary spermatocytes and primary oocytes. By developing a germ cell-specific CRISPR/Cas9 system, we demonstrated that germ cell-specific depletion of ciliary genes resulted in compromised double-strand break repair, reduced crossover formation, and increased germ cell apoptosis. Our study reveals a previously undiscovered role for cilia during meiosis and suggests that extracellular signals may regulate meiotic recombination via this particular organelle.


Assuntos
Cílios , Peixe-Zebra , Animais , Masculino , Meiose , Pareamento Cromossômico , Reparo do DNA
20.
Biomater Adv ; 139: 213033, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35882124

RESUMO

Silane adhesion layer strategy has been widely used to covalently graft biomolecules to the titanium implant surface, thereby conferring the implant bioactivity to ameliorate osseointegration. However, few researchers pay attention to the effects of silanization parameters on biocompatibility and biofunctionality of the silane adhesion layers. Accordingly, the present study successfully fabricated the silane adhesion layers with different thickness, intactness, and surface morphologies by introducing 3-aminopropyltriethoxysilane on the alkali-treated titanium surface in time-varied processing of silanization. The regulatory effects of the silane adhesion layers on angiogenesis and osteogenesis were assessed in vitro. Results showed that the prolonged silanization processing time increased the thickness and intactness of the silane adhesion layer and significantly improved its biocompatibility. Notably, the silane adhesion layer prepared after 12 h of silanization exhibited a brain-like surface morphology and benefited the adhesion and proliferation of endothelial cells (ECs) and osteoblasts (OBs). Moreover, the layer promoted angiogenesis via stimulating vascular endothelial growth factor (VEGF) secretion and nitric oxide (NO) production of ECs. Simultaneously, it improved osteogenesis by enhancing alkaline phosphatase (ALP) activity, collagen secretion, and extracellular matrix mineralization of OBs. This work systematically investigated the biocompatibility and biofunctionality of the modified silane adhesion layers, thus providing valuable references for their application in covalently grafting biomolecules on the titanium implant surface.


Assuntos
Osteogênese , Titânio , Células Endoteliais , Silanos/farmacologia , Propriedades de Superfície , Titânio/farmacologia , Fator A de Crescimento do Endotélio Vascular/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA