Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(47): e202314517, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37843815

RESUMO

Catalytic asymmetric transformations by dearomatization have developed into a widely applicable synthetic strategy, but heavily relied on the use of arenes bearing a heteroatom. In this case, the dearomatization is facilitated by the involvement of a p-orbital electron of the heteroatom. Different from the conventional substrate-dependent model, here we demonstrate that the activation by a d-orbital electron of the transition-metal center can serve as a driving force for dearomatization, and is applied to the development of a novel asymmetric alkynyl copper facilitated remote substitution reaction. A newly modified PyBox chiral ligand enables the construction of valuable diarylmethyl and triarylmethyl skeletons in high enantioselectivities. An unexpected tandem process involving sequential remote substitution/cyclization/1,5-H shift leads to the formation of the enantioenriched C-N axis. A gram-scale reaction and various downstream transformations highlight the robustness of this method and the potential transformations of the products. Preliminary mechanistic studies reveal a mononuclear Cu-catalyzed remote substitution process.

2.
Opt Express ; 30(3): 4106-4116, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35209655

RESUMO

We present a chip-scale integrated pH sensor with high sensitivity by using an optofluidic ring resonator (OFRR) laser. An optical fiber with a high refractive index (RI) is employed both as an optical cavity and the sensing reactor along a microchannel, while disodium fluorescein (DSF) aqueous solution with a low RI is served as the cladding gain medium and fluorescent probes. The pump light is introduced along the fiber axis and guided by the total internal reflection at the fiber/cladding interface. The evanescent field of the pump light extends out of the fiber surface and efficiently excites the dye molecules residing in the evanescent field region of the Whispering Gallery Modes (WGMs) of the OFRRs to produce lasing emission. This pumping scheme provides a uniform excitation to the gain medium and significantly increases the signal-to-noise ratio, ensuring a low lasing threshold and highly sensitive sensing. The lasing threshold property under different pH conditions is experimentally and theoretically conducted to evaluate the sensing performance, which shows that the lasing threshold highly depends on the pH value of the cladding solution due to the increasing deprotonation process. We further verify that the intensity of the lasing emission and the pH value shows good linearity in the pH range 6.51-8.13, with a 2-order-of-magnitude sensitivity enhancement compared to fluorescence measurement. The proposed OFRR lasing platform shows excellent robustness and low sample consumption, providing a powerful sensing strategy in medicine, and hazardous/toxic/volatile sensing, which require label-free, real-time, and in situ detection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA