Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Enzyme Microb Technol ; 177: 110427, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518553

RESUMO

d-mannose has been widely used in food, medicine, cosmetic, and food-additive industries. To date, chemical synthesis or enzymatic conversion approaches based on iso/epimerization reactions for d-mannose production suffered from low conversion rate due to the reaction equilibrium, necessitating intricate separation processes for obtaining pure products on an industrial scale. To circumvent this challenge, this study showcased a new approach for d-mannose synthesis from glucose through constructing a phosphorylation-dephosphorylation pathway in an engineered strain. Specifically, the gene encoding phosphofructokinase (PfkA) in glycolytic pathway was deleted in Escherichia coli to accumulate fructose-6-phosphate (F6P). Additionally, one endogenous phosphatase, YniC, with high specificity to mannose-6-phosphate, was identified. In ΔpfkA strain, a recombinant synthetic pathway based on mannose-6-phosphate isomerase and YniC was developed to direct F6P to mannose. The resulting strain successfully produced 25.2 g/L mannose from glucose with a high conversion rate of 63% after transformation for 48 h. This performance surpassed the 15% conversion rate observed with 2-epimerases. In conclusion, this study presents an efficient method for achieving high-yield mannose synthesis from cost-effective glucose.


Assuntos
Escherichia coli , Glucose , Manose , Manose/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fosforilação , Glucose/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Manosefosfatos/metabolismo , Engenharia Metabólica , Frutosefosfatos/metabolismo , Manose-6-Fosfato Isomerase/metabolismo , Manose-6-Fosfato Isomerase/genética , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Glicólise
2.
iScience ; 27(3): 109034, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38433920

RESUMO

Azasugars, such as 1-deoxynojirimycin (1-DNJ), exhibit unique physiological functions and hold promising applications in medicine and health fields. However, the biosynthesis of 1-DNJ is hindered by the low activity and thermostability of the transaminase. In this study, the transaminase from Mycobacterium vanbaalenii (MvTA) with activity toward d-fructose was engineered through semi-rational design and high-throughput screening method. The final mutant M9-1 demonstrated a remarkable 31.2-fold increase in specific activity and an impressive 200-fold improvement in thermostability compared to the wild-type enzyme. Molecular dynamics (MD) simulations revealed that the mutation sites of H69R and K145R in M9-1 played crucial roles in the binding of the amino acceptor and donor, leading to the stable conformation of substrates within the active pocket. An enzyme cascade reaction was developed using M9-1 and the dehydrogenase from Paenibacillus polymyxa (GutB1) for the production of mannojirimycin (MJ), which provided a new idea for the in vitro biosynthesis of 1-DNJ.

3.
J Sci Food Agric ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436580

RESUMO

BACKGROUND: Isomaltulose is a 'generally recognized as safe' ingredient and is widely used in the food, pharmaceutical and chemical industries. The exploration and development of efficient technologies is essential for enhancing isomaltulose yield. RESULTS: In the present study, a simple and efficient surface display platform mediated by a non-yeast signal peptide was developed in Yarrowia lipolytica and utilized to efficiently produce isomaltulose from sucrose. We discovered that the signal peptide SP1 of sucrose isomerase from Pantoea dispersa UQ68J (PdSI) could guide SIs anchoring to the cell surface of Y. lipolytica, demonstrating a novel and simple cell surface display strategy. Furthermore, the PdSI expression level was significantly increased through optimizing the promoters and multi-site integrating genes into chromosome. The final strain gained 451.7 g L-1 isomaltulose with a conversion rate of 90.3% and a space-time yield of 50.2 g L-1 h-1 . CONCLUSION: The present study provides an efficient way for manufacturing isomaltulose with a high space-time yield. This heterogenous signal peptide-mediated cell surface display strategy featured with small fusion tag (approximately 2.2 kDa of SP1), absence of enzyme leakage in fermentation broth and ample room for optimization, providing a convenient way to construct whole-cell biocatalysts to synthesize other products and broadening the array of molecular toolboxes accessible for engineering Y. lipolytica. © 2024 Society of Chemical Industry.

4.
J Agric Food Chem ; 72(1): 604-612, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38153978

RESUMO

The global protein shortage is intensifying, and promising means to ensure daily protein supply are desperately needed. The mycoprotein produced by Fusarium venenatum is a good alternative to animal/plant-derived protein. To comprehensively improve the mycoprotein synthesis, a stepwise strategy by blocking the byproduct ethanol synthesis and the gluconeogenesis pathway and by optimizing the fermentation medium was herein employed. Ultimately, compared to the wild-type strain, the synthesis rate, carbon conversion ratio, and protein content of mycoprotein produced from the engineered strain were increased by 57% (0.212 vs 0.135 g/L·h), 62% (0.351 vs 0.217 g/g), and 57% (61.9 vs 39.4%), respectively, accompanied by significant reductions in CO2 emissions. These results provide a referential strategy that could be useful for improving mycoprotein synthesis in other fungi; more importantly, the obtained high-mycoprotein-producing strain has the potential to promote the development of the edible protein industry and compensate for the gap in protein resources.


Assuntos
Dióxido de Carbono , Fusarium , Animais , Fermentação , Engenharia Metabólica
5.
Sci Bull (Beijing) ; 68(20): 2370-2381, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37604722

RESUMO

Developing artificial "CO2-sugar" platforms is meaningful for addressing challenges posed by land scarcity and climate change to the supply of dietary sugar. However, upcycling CO2 into complex polyoxygenated carbohydrates involves several major challenges, including achieving enantioselective and thermodynamically driven transformation and expanding product repertoires while reducing energy consumption. We present a versatile chemoenzymatic roadmap based on aldol condensation, iso/epimerization, and dephosphorylation reactions for asymmetric CO2 and H2 assembly into sugars with perfect stereocontrol. In particular, we developed a minimum ATP consumption and the shortest pathway for bottom-up biosynthesis of the fundamental precursor, fructose-6-phosphate, which is valuable for synthesizing structure-diverse sugars and derivatives. Engineering bottleneck-associated enzyme catalysts aided in the thermodynamically driven synthesis of several energy-dense and functional hexoses, such as glucose and D-allulose, featuring higher titer (63 mmol L-1) and CO2-product conversion rates (25 mmol C L-1 h-1) compared to established in vitro CO2-fixing pathways. This chemical-biological platform demonstrated greater carbon conversion yield than the conventional "CO2-bioresource-sugar" process and could be easily extended to precisely synthesize other high-order sugars from CO2.


Assuntos
Dióxido de Carbono , Hexoses , Dióxido de Carbono/metabolismo , Hexoses/metabolismo , Glucose/metabolismo , Carboidratos , Açúcares
7.
Front Bioeng Biotechnol ; 11: 1136473, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36926688

RESUMO

Although many microorganisms have been found to produce bioflocculants, and bioflocculants have been considered as attractive alternatives to chemical flocculants in wastewater treatment, there are few reports on bioflocculants from the safe strain C. glutamicum, and the application of bioflocculants in acid wastewater treatment is also rare attributed to the high content of metal ions and high acidity of the water. In this study, a novel bioflocculant produced by Corynebacterium glutamicum Cg1-P30 was investigated. An optimal production of this bioflocculant with a yield of 0.52 g/L was achieved by Box-Behnken design, using 12.20 g/L glucose, 4.00 g/L corn steep liquor and 3.60 g/L urea as carbon and nitrogen source. The structural characterization revealed that the bioflocculant was mainly composed of 37.50% neutral sugar, 10.03% uronic acid, 6.32% aminosugar and 16.51% protein. Carboxyl, amine and hydroxyl groups were the functional groups in flocculation. The biofocculant was thermally stable and dependent on metal ions and acidic pH, showing a good flocculating activity of 91.92% at the dosage of 25 mg/L by aid of 1.0 mM Fe3+ at pH 2.0. Due to these unique properties, the bioflocculant could efficiently remove metal ions such as Fe, Al, Zn, and Pb from the real acid mine wastewater sample without pH adjustment, and meanwhile made the acid mine wastewater solution become clear with an increased neutral pH. These findings suggested the great potential application of the non-toxic bioflocculant from C. glutamicum Cg1-P30 in acid mine wastewater treatment.

8.
Synth Syst Biotechnol ; 8(1): 141-147, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36687472

RESUMO

CRISPR/Cas9-mediated homology-directed recombination is an efficient method to express target genes. Based on the above method, providing ideal neutral integration sites can ensure the reliable, stable, and high expression of target genes. In this study, we obtained a fluorescent transformant with neutral integration and high expression of the GFP expression cassette from the constructed GFP expression library and named strain FS. The integration site mapped at 4886 bp upstream of the gene FVRRES_00686 was identified in strain FS based on a Y-shaped adaptor-dependent extension, and the sequence containing 600 bp upstream and downstream of this site was selected as the candidate region for designing sgRNAs (Sites) for CRISPR/Cas9-mediated homology-directed recombination. PCR analysis showed that the integration efficiency of CRISPR/Cas9-mediated integration of target genes in designed sites reached 100%. Further expression stability and applicability analysis revealed that the integration of the target gene into the above designed sites can be stably inherited and expressed and has no negative effect on the growth of F. venenatum TB01. These results indicate the above designed neutral sites have the potential to accelerate the development of F. venenatum TB01 through overexpression of target genes in metabolic engineering.

9.
Foods ; 11(21)2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36359938

RESUMO

In order to alleviate the pressure on environmental resources faced by meat and dairy production and to satisfy the increasing demands of consumers for food safety and health, alternative proteins have drawn considerable attention in the food industry. However, despite the successive reports of alternative protein food, the processing and application foundation of alternative proteins for meat and dairy is still weak. This paper summarizes the nutritional composition and physicochemical characteristics of meat and dairy alternative proteins from four sources: plant proteins, fungal proteins, algal proteins and insect proteins. The difference between these alternative proteins to animal proteins, the effects of their structural features and environmental conditions on their properties, as well as the corresponding mechanism are compared and discussed. Though fungal proteins, algal proteins and insect proteins have shown some advantages over traditional plant proteins, such as the comparable protein content of insect proteins to meat, the better digestibility of fungal proteins and the better foaming properties of algal proteins, there is still a big gap between alternative proteins and meat and dairy proteins. In addition to needing to provide amino acid composition and digestibility similar to animal proteins, alternative proteins also face challenges such as maintaining good solubility and emulsion properties. Their nutritional and physicochemical properties still need thorough investigation, and for commercial application, it is important to develop and optimize industrial technology in alternative protein separation and modification.

10.
iScience ; 25(10): 105222, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36248741

RESUMO

Mogrosides are widely served as natural zero-calorie sweeteners. To date, the biosynthesis of high-intensity sweetness mogrosides V from mogrol has not been achieved because of inefficient and uncontrollable multi-glycosylation process. To address this challenge, we reported three UDP-glycosyltransferases (UGTs) catalyzing the primary and branched glycosylation of mogrosides and increased the catalytic efficiency by 74-400-folds toward branched glycosylation using an activity-based sequence conservative analysis engineering strategy. The computational studies provided insights into the origin of improved catalytic activity. By virtue of UGT mutants, we provided regio- and bond-controllable multi-glycosylation routes, successfully facilitating sequential glycosylation of mogrol to three kinds of mogroside V in excellent yield of 91-99%. Meanwhile, the feasibility of the routes was confirmed in engineered yeasts. It suggested that the multi-glycosylation routes would be combined with mogrol synthetic pathway to de novo produce mogrosides from glucose by aid of metabolic engineering and synthetic biology strategies in the future.

11.
Appl Microbiol Biotechnol ; 106(19-20): 6583-6593, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36109386

RESUMO

The clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas9) system is a powerful genome editing tool that has been successfully established in some filamentous fungi due to its high flexibility and efficiency. However, the potential toxicity of Cas9 restricts the further popularization and application of this system to some degree. The AMA1 element is a self-replicator derived from Aspergillus nidulans, and its derived vectors can be readily lost without selection. In this study, we eliminated Cas9 toxicity to Fusarium venenatum TB01 based on 100% AMA1-based Cas9 expression vector loss. Meanwhile, two available endogenous Pol III promoters (FvU6374 and Fv5SrRNA) used for sgRNA expression of the CRISPR/Cas9 system were excavated. Compared to FvU6374 (40-50%), Fv5SrRNA exhibited higher single-gene editing efficiency (> 85%), and the efficiency of simultaneous editing of the two genes using Fv5SrRNA was over 75%. Based on this system, a butanediol dehydrogenase encoding gene FvBDH was deleted, and the ethanol yield in variants increased by 52% compared with that of the wild-type. The highly efficient CRISPR/Cas9 system developed here lays the technical foundation for advancing the development of F. venenatum TB01 through metabolic engineering, and the obtained FvBDH gene-edited variants have the potential to simultaneously produce mycoprotein and ethanol by further gene modification and fermentation process optimization in the future.Key points• Cas9 toxicity disappeared and DNA-free gene-edited strains obtained after vector loss• Promoter Fv5SrRNA conferred TB01 higher gene editing efficiency than FvU6374•Deletion of the FvBDH gene resulted in a 52% increase in ethanol yield.


Assuntos
Proteínas Associadas a CRISPR , Edição de Genes , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas , Etanol/toxicidade , Fusarium , Edição de Genes/métodos
12.
Nat Commun ; 13(1): 3582, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739124

RESUMO

Naturally, haloacid dehalogenase superfamily phosphatases have been evolved with broad substrate promiscuity; however, strong specificity to a particular substrate is required for developing thermodynamically driven routes for manufacturing sugars. How to alter the intrinsic substrate promiscuity of phosphatases and fit the "one enzyme-one substrate" model remains a challenge. Herein, we report the structure-guided engineering of a phosphatase, and successfully provide variants with tailor-made preference for three widespread phosphorylated sugars, namely, glucose 6-phosphate, fructose 6-phosphate, and mannose 6-phosphate, while simultaneously enhancement in catalytic efficiency. A 12000-fold switch from unfavorite substrate to dedicated one is generated. Molecular dynamics simulations reveal the origin of improved activity and substrate specificity. Furthermore, we develop four coordinated multienzyme systems and accomplish the conversion of inexpensive sucrose and starch to fructose and mannose in excellent yield of 94-96%. This innovative sugar-biosynthesis strategy overcomes the reaction equilibrium of isomerization and provides the promise of high-yield manufacturing of other monosaccharides and polyols.


Assuntos
Monoéster Fosfórico Hidrolases , Açúcares , Frutose , Cinética , Manose , Fosfatos , Monoéster Fosfórico Hidrolases/metabolismo , Especificidade por Substrato , Termodinâmica
13.
J Fungi (Basel) ; 8(2)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35205923

RESUMO

Genetic engineering is one of the most effective methods to obtain fungus strains with desirable traits. However, in some filamentous fungi, targeted gene deletion transformant screening on primary transformation plates is time-consuming and laborious due to a relatively low rate of homologous recombination. A strategy that compensates for the low recombination rate by improving screening efficiency was performed in F. venenatum TB01. In this study, the visualized gene deletion system that could easily distinguish the fluorescent randomly inserted and nonfluorescent putative deletion transformants using green fluorescence protein (GFP) as the marker and a hand-held lamp as the tool was developed. Compared to direct polymerase chain reaction (PCR) screening, the screening efficiency of gene deletion transformants in this system was increased approximately fourfold. The visualized gene deletion system developed here provides a viable method with convenience, high efficiency, and low cost for reaping gene deletion transformants from species with low recombination rates.

14.
Sheng Wu Gong Cheng Xue Bao ; 38(11): 4101-4114, 2022 Nov 25.
Artigo em Chinês | MEDLINE | ID: mdl-37699680

RESUMO

Utilization of carbon dioxide (CO2) is a huge challenge for global sustainable development. Biological carbon fixation occurs in nature, but the low energy efficiency and slow speed hamper its commercialization. Physical-chemical carbon fixation is efficient, but relies on high energy consumption and often generates unwanted by-products. Combining the advantages of biological, physical and chemical technologies for efficient utilization of CO2 remains to be an urgent scientific and technological challenge to be addressed. Here, based on the development of Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences in the past decade, we summarize the important progress in the design and construction of functional parts, pathways and systems for artificial bioconversion of carbon dioxide, including the breakthrough on the artificial synthesis of starch from CO2. Moreover, we prospect how to further develop the technologies for artificial bioconversion of carbon dioxide. These progress and perspectives provide new insight for achieving the goal of "carbon peaking and carbon neutrality".


Assuntos
Biotecnologia , Dióxido de Carbono , Indústrias , Amido
15.
Sheng Wu Gong Cheng Xue Bao ; 38(11): 4311-4328, 2022 Nov 25.
Artigo em Chinês | MEDLINE | ID: mdl-37699691

RESUMO

Affected by the rapid population growth, the unbalanced level of social and economic development, the aging population and unhealthy eating patterns, we are facing problems such as lack of food and nutrition, and the high incidence of nutrition related diseases. At the same time, the demand for low-carbon development calls for a sustainable food supply model. Therefore, technologies that meet the taste and nutritional needs of consumers, and serve as a green and sustainable food supply model, such as functional sugar, alternative meat and other future food technologies, have attracted increasing attention. The rapidly developed emerging biomanufacturing technology and its products will support the development of a green and low-carbon future food industry and trigger profound changes in the traditional production mode. Collectively, this represents a major strategic development direction of the emerging bioeconomy. This review summarizes the biomanufacturing technology of functional sugars, microbial proteins and key auxiliary ingredients of alternative meat. We discuss the latest progress in cell factory construction, strain evaluation and process optimization in industrial environment and derived product development. Moreover, future development trend was prospected, with the aim to facilitate industrial development of biomanufacturing of future food.


Assuntos
Carbono , Carne , Meio Ambiente
16.
Biochem Biophys Res Commun ; 579: 54-61, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34587555

RESUMO

1,2-ß-Mannobiose phosphorylases (1,2-ß-MBPs) from glycoside hydrolase 130 (GH130) family are important bio-catalysts in glycochemistry applications owing to their ability in synthesizing oligomannans. Here, we report the crystal structure of a thermostable 1,2-ß-MBP from Thermoanaerobacter sp. X-514 termed Teth514_1789 to reveal the molecular basis of its higher thermostability and mechanism of action. We also solved the enzyme complexes of mannose, mannose-1-phosphate (M1P) and 1,4-ß-mannobiose to manifest the enzyme-substrate interaction networks of three main subsites. Notably, a Zn ion that should be derived from crystallization buffer was found in the active site and coordinates the phosphate moiety of M1P. Nonetheless, this Zn-coordination should reflect an inhibitory status as supplementing Zn severely impairs the enzyme activity. These results indicate that the effects of metal ions should be taken into consideration when applying Teth514_1789 and other related enzymes. Based on the structure, a reliable model of Teth514_1788 that shares 61.7% sequence identity to Teth514_1789 but displays a different substrate preference was built. Analyzing the structural features of these two closely related enzymes, we hypothesized that the length of a loop fragment that covers the entrance of the catalytic center might regulate the substrate selectivity. In conclusion, these information provide in-depth understanding of GH130 1,2-ß-MBPs and should serve as an important guidance for enzyme engineering for further applications.


Assuntos
Thermoanaerobacter/enzimologia , beta-Manosidase/química , Sítios de Ligação , Catálise , Domínio Catalítico , Glicosídeo Hidrolases/química , Íons , Ligantes , Mananas/química , Manose/química , Manosefosfatos/química , Fosforilases/química , Plasmídeos/metabolismo , Conformação Proteica , Reprodutibilidade dos Testes , Eletricidade Estática , Temperatura , Zinco/química
17.
Science ; 373(6562): 1523-1527, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34554807

RESUMO

Starches, a storage form of carbohydrates, are a major source of calories in the human diet and a primary feedstock for bioindustry. We report a chemical-biochemical hybrid pathway for starch synthesis from carbon dioxide (CO2) and hydrogen in a cell-free system. The artificial starch anabolic pathway (ASAP), consisting of 11 core reactions, was drafted by computational pathway design, established through modular assembly and substitution, and optimized by protein engineering of three bottleneck-associated enzymes. In a chemoenzymatic system with spatial and temporal segregation, ASAP, driven by hydrogen, converts CO2 to starch at a rate of 22 nanomoles of CO2 per minute per milligram of total catalyst, an ~8.5-fold higher rate than starch synthesis in maize. This approach opens the way toward future chemo-biohybrid starch synthesis from CO2.

18.
Foods ; 10(7)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202811

RESUMO

The scope of this investigation aimed at obtaining and stabilizing bioactive products derived from Lycium barbarum seeds and peels, which were the byproducts in the processing of fruit juice. Zeaxanthin dipalmitate is a major carotenoid, comprising approximately 80% of the total carotenoid content in the seeds and peels. The method of obtainment was supercritical fluid CO2 extraction, studying different parameters that affect the oil yield and content of zeaxanthin dipalmitate. The optimized protocol to enact successful supercritical fluid CO2 extraction included optimum extraction pressure of 250 bar, temperature at 60 °C over a time span of 2.0 h, and a CO2 flow of 30 g/min, together with the use of a cosolvent (2% ethanol). The yields of oil and zeaxanthin dipalmitate under these optimal conditions were 17 g/100 g and 0.08 g/100 g, respectively. The unsaturated fatty acids were primarily linoleic acid (C18:2), oleic acid (C18:1), and γ-linolenic acid (C18:3), with their contents being as high as 91.85 ± 0.27% of the total fatty acids. The extract was a red-colored oil that was consequently microencapsulated through spray-drying with octenylsuccinate starch, gum arabic, and maltodextrin (13.5:7.5:3, w/w) as wall materials to circumvent lipid disintegration during storage and add to fruit juice in a dissolved form. The mass ratio of core material and wall material was 4:1. These materials exhibited the highest microencapsulation efficiency (92.83 ± 0.13%), with a moisture content of 1.98 ± 0.05% and solubility of 66.22 ± 0.24%. The peroxide content level within the microencapsulated zeaxanthin dipalmitate-rich oil remained at one part per eight in comparison to the unencapsulated oil, following fast-tracked oxidation at 60 °C for 6 weeks. This indicated the potential oxidation stability properties of microcapsule powders. Consequently, this microencapsulated powder has good prospects for development, and can be utilized for a vast spectrum of consumer health and beauty products.

19.
Enzyme Microb Technol ; 147: 109784, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33992412

RESUMO

Asymmetric CC bond formation catalyzed by aldolases requires the supplementation of nucleophiles and receptors in the reaction medium. However, aldol condensation using a single ketone as substrate has never been reported yet. In this work, we discovered that d-fructose-6-phosphate aldolase (FSA) could convert two 1-hydroxyalkanones, such as hydroxyacetone (HA) and 1-hydroxy-2-butanone, into two type of diketones. The initial product synthesis rate increased 3-fold and the yield reached to 56 %, when pure oxygen was directly inputted into the reaction medium. The results confirmed that oxygen participated in this reaction and hydrogen peroxide was generated. Metal ions Co2+ and Cu2+ remarkably increased the conversion yield compared with the control. For this reaction mechanism, we conjectured that HA may be oxidized to methylglyoxal by enzyme FSA in the presence of oxygen in the medium, and then FSA catalyzes the aldol addition between HA and its oxidative product MG to form diketone products. The obtained diketones could serve as important precursors for preparing furans and pyrroles.


Assuntos
Escherichia coli , Frutose-Bifosfato Aldolase , Aldeído Liases/metabolismo , Catálise , Escherichia coli/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Frutosefosfatos , Cetonas , Especificidade por Substrato
20.
Biochem Biophys Res Commun ; 534: 73-78, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33310191

RESUMO

Glycosylation catalyzed by uridine diphosphate-dependent glycosyltransferases (UGT) contributes to the chemical and functional diversity of a number of natural products. Bacillus subtilis Bs-YjiC is a robust and versatile UGT that holds potentials in the biosynthesis of unnatural bioactive ginsenosides. To understand the molecular mechanism underlying the substrate promiscuity of Bs-YjiC, we solved crystal structures of Bs-YjiC and its binary complex with uridine diphosphate (UDP) at resolution of 2.18 Å and 2.44 Å, respectively. Bs-YjiC adopts the classical GT-B fold containing the N-terminal and C-terminal domains that accommodate the sugar acceptor and UDP-glucose, respectively. Molecular docking indicates that the spacious sugar-acceptor binding pocket of Bs-YjiC might be responsible for its broad substrate spectrum and unique glycosylation patterns toward protopanaxadiol-(PPD) and PPD-type ginsenosides. Our study reveals the structural basis for the aglycone promiscuity of Bs-YjiC and will facilitate the protein engineering of Bs-YjiC to synthesize novel bioactive glycosylated compounds.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Cristalografia por Raios X , Ginsenosídeos/química , Ginsenosídeos/metabolismo , Glicosilação , Glicosiltransferases/genética , Modelos Moleculares , Simulação de Acoplamento Molecular , Domínios Proteicos , Sapogeninas/metabolismo , Especificidade por Substrato , Difosfato de Uridina/química , Difosfato de Uridina/metabolismo , Uridina Difosfato Glucose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA