RESUMO
Although hyponatremia and salt wasting are common in patients with HIV/AIDS, the understanding of their contributing factors is limited. HIV viral protein R (Vpr) contributes to HIV-associated nephropathy. To investigate the effects of Vpr on the distal tubules and on the expression level of the Slc12a3 gene, encoding the sodium-chloride cotransporter (which is responsible for sodium reabsorption in distal nephron segments), single-nucleus RNA sequencing was performed on kidney cortices from three wild-type (WT) and three Vpr transgenic (Vpr Tg) mice. The percentage of distal convoluted tubule (DCT) cells was significantly lower in Vpr Tg mice compared with WT mice (P < 0.05); in Vpr Tg mice, Slc12a3 expression was not significantly different in DCT cells. The Pvalb+ DCT1 subcluster had fewer cells in Vpr Tg mice compared with those in WT mice (P < 0.01). Immunohistochemistry revealed fewer Slc12a3+Pvalb+ DCT1 segments in Vpr Tg mice. Differential gene expression analysis between Vpr Tg and WT samples in the DCT cluster showed down-regulation of the Ier3 gene, which is an inhibitor of apoptosis. The in vitro knockdown of Ier3 by siRNA transfection induced apoptosis in mouse DCT cells. These observations suggest that the salt-wasting effect of Vpr in Vpr Tg mice is likely mediated by Ier3 down-regulation in DCT1 cells and loss of Slc12a3+Pvalb+ DCT1 segments.
Assuntos
Túbulos Renais Distais , Camundongos Transgênicos , Análise de Sequência de RNA , Animais , Túbulos Renais Distais/metabolismo , Túbulos Renais Distais/patologia , Camundongos , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/genética , Nefropatia Associada a AIDS/patologia , Nefropatia Associada a AIDS/genética , Nefropatia Associada a AIDS/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genéticaRESUMO
Transforming growth factor (TGF)-ß signaling is a well-established pathogenic mediator of diabetic kidney disease (DKD). However, owing to its pleiotropic actions, its systemic blockade is not therapeutically optimal. The expression of TGF-ß signaling regulators can substantially influence TGF-ß's effects in a cell- or context-specific manner. Among these, leucine-rich α2-glycoprotein 1 (LRG1) is significantly increased in glomerular endothelial cells (GECs) in DKD. As LRG1 is a secreted molecule that can exert autocrine and paracrine effects, we examined the effects of LRG1 loss in kidney cells in diabetic OVE26 mice by single-cell transcriptomic analysis. Gene expression analysis confirmed a predominant expression of Lrg1 in GECs, which further increased in diabetic kidneys. Loss of Lrg1 led to the reversal of angiogenic and TGF-ß-induced gene expression in GECs, which were associated with DKD attenuation. Notably, Lrg1 loss also mitigated the increased TGF-ß-mediated gene expression in both podocytes and mesangial cells in diabetic mice, indicating that GEC-derived LRG1 potentiates TGF-ß signaling in glomerular cells in an autocrine and paracrine manner. Indeed, a significant reduction in phospho-Smad proteins was observed in the glomerular cells of OVE26 mice with LRG1 loss. These results indicate that specific antagonisms of LRG1 may be an effective approach to curb the hyperactive glomerular TGF-ß signaling to attenuate DKD.
Assuntos
Nefropatias Diabéticas , Células Endoteliais , Glicoproteínas , Glomérulos Renais , Transdução de Sinais , Fator de Crescimento Transformador beta , Animais , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/patologia , Camundongos , Fator de Crescimento Transformador beta/metabolismo , Glicoproteínas/metabolismo , Glicoproteínas/genética , Células Endoteliais/metabolismo , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Diabetes Mellitus Experimental/metabolismo , Humanos , Podócitos/metabolismo , Modelos Animais de Doenças , Regulação da Expressão GênicaRESUMO
Retinoic acid receptor responder protein-1 (RARRES1) is a podocyte-enriched transmembrane protein whose increased expression correlates with human glomerular disease progression. RARRES1 promotes podocytopenia and glomerulosclerosis via p53-mediated podocyte apoptosis. Importantly, the cytopathic actions of RARRES1 are entirely dependent on its proteolytic cleavage into a soluble protein (sRARRES1) and subsequent podocyte uptake by endocytosis, as a cleavage mutant RARRES1 exerted no effects in vitro or in vivo. As RARRES1 expression is upregulated in human glomerular diseases, here we investigated the functional consequence of podocyte-specific overexpression of RARRES1 in mice in the experimental focal segmental glomerulosclerosis and diabetic kidney disease. We also examined the effects of long-term RARRES1 overexpression on slowly developing aging-induced kidney injury. As anticipated, the induction of podocyte overexpression of RARRES1 (Pod-RARRES1WT) significantly worsened glomerular injuries and worsened kidney function in all three models, while overexpression of RARRES1 cleavage mutant (Pod-RARRES1MT) did not. Remarkably, direct uptake of sRARRES1 was also seen in proximal tubules of injured Pod-RARRES1WT mice and associated with exacerbated tubular injuries, vacuolation, and lipid accumulation. Single-cell RNA sequence analysis of mouse kidneys demonstrated RARRES1 led to a marked deregulation of lipid metabolism in proximal tubule subsets. We further identified matrix metalloproteinase 23 (MMP23) as a highly podocyte-specific metalloproteinase and responsible for RARRES1 cleavage in disease settings, as adeno-associated virus 9-mediated knockdown of MMP23 abrogated sRARRES1 uptake in tubular cells in vivo. Thus, our study delineates a previously unrecognized mechanism by which a podocyte-derived protein directly facilitates podocyte and tubular injury in glomerular diseases and suggests that podocyte-specific functions of RARRES1 and MMP23 may be targeted to ameliorate glomerular disease progression in vivo.
Assuntos
Nefropatias Diabéticas , Progressão da Doença , Glomerulosclerose Segmentar e Focal , Túbulos Renais Proximais , Podócitos , Animais , Humanos , Masculino , Camundongos , Apoptose , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/etiologia , Modelos Animais de Doenças , Endocitose , Glomerulosclerose Segmentar e Focal/patologia , Glomerulosclerose Segmentar e Focal/metabolismo , Glomerulosclerose Segmentar e Focal/genética , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Podócitos/metabolismo , Podócitos/patologiaRESUMO
Cholesterol 25-hydroxylase (CH25H), an enzyme involved in cholesterol metabolism, regulates inflammatory responses and lipid metabolism. However, its role in kidney disease is not known. The author found that CH25H transcript is expressed mostly in glomerular and peritubular endothelial cells and that its expression increased in human and mouse diabetic kidneys. Global deletion of Ch25h in Leprdb/db mice aggravated diabetic kidney disease (DKD), which is associated with increased endothelial cell apoptosis. Treatment of 25-hydroxycholesterol (25-HC), the product of CH25H, alleviated kidney injury in Leprdb/db mice. Mechanistically, 25-HC binds to GTP-binding protein ADP-ribosylation factor 4 (ARF4), an essential protein required for maintaining protein transport in the Golgi apparatus. Interestingly, ARF4's GTPase-activating protein ASAP1 is also predominantly expressed in endothelial cells and its expression increased in DKD. Suppression of ARF4 activity by deleting ARF4 or overexpressing ASAP1 results in endothelial cell death. These results indicate that 25-HC binds ARF4 to inhibit its interaction with ASAP1, and thereby resulting in enhanced ARF4 activity to confer renoprotection. Therefore, treatment of 25-HC improves kidney injury in DKD in part by restoring ARF4 activity to maintain endothelial cell survival. This study provides a novel mechanism and a potential new therapy for DKD.
Assuntos
Fatores de Ribosilação do ADP , Nefropatias Diabéticas , Esteroide Hidroxilases , Animais , Humanos , Masculino , Camundongos , Fatores de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/genética , Modelos Animais de Doenças , Hidroxicolesteróis , Camundongos Endogâmicos C57BL , Esteroide Hidroxilases/metabolismo , Esteroide Hidroxilases/genéticaAssuntos
Apolipoproteína L1 , Transplante de Rim , Humanos , Apolipoproteína L1/genética , Fatores de Risco , Feminino , Masculino , População Negra/genética , Prognóstico , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença , Falência Renal Crônica/genética , Falência Renal Crônica/cirurgia , Negro ou Afro-Americano/genética , TransplantadosRESUMO
COVID-19 has been a significant public health concern for the last four years; however, little is known about the mechanisms that lead to severe COVID-associated kidney injury. In this multicenter study, we combined quantitative deep urinary proteomics and machine learning to predict severe acute outcomes in hospitalized COVID-19 patients. Using a 10-fold cross-validated random forest algorithm, we identified a set of urinary proteins that demonstrated predictive power for both discovery and validation set with 87% and 79% accuracy, respectively. These predictive urinary biomarkers were recapitulated in non-COVID acute kidney injury revealing overlapping injury mechanisms. We further combined orthogonal multiomics datasets to understand the mechanisms that drive severe COVID-associated kidney injury. Functional overlap and network analysis of urinary proteomics, plasma proteomics and urine sediment single-cell RNA sequencing showed that extracellular matrix and autophagy-associated pathways were uniquely impacted in severe COVID-19. Differentially abundant proteins associated with these pathways exhibited high expression in cells in the juxtamedullary nephron, endothelial cells, and podocytes, indicating that these kidney cell types could be potential targets. Further, single-cell transcriptomic analysis of kidney organoids infected with SARS-CoV-2 revealed dysregulation of extracellular matrix organization in multiple nephron segments, recapitulating the clinically observed fibrotic response across multiomics datasets. Ligand-receptor interaction analysis of the podocyte and tubule organoid clusters showed significant reduction and loss of interaction between integrins and basement membrane receptors in the infected kidney organoids. Collectively, these data suggest that extracellular matrix degradation and adhesion-associated mechanisms could be a main driver of COVID-associated kidney injury and severe outcomes.
RESUMO
Cytomegalovirus (CMV) infection is associated with poor kidney transplant outcomes. While innate and adaptive immune cells have been implicated in its prevention, an in-depth characterization of the in vivo kinetics of multiple cell subsets and their role in protecting against CMV infection has not been achieved. Here, we performed high-dimensional immune phenotyping by mass cytometry, and functional assays, on 112 serially collected samples from CMV seropositive kidney transplant recipients. Advanced unsupervised deep learning analysis was used to assess immune cell populations that significantly correlated with prevention against CMV infection and anti-viral immune function. Prior to infection, kidney transplant recipients who developed CMV infection showed significantly lower CMV-specific cell-mediated immune (CMI) frequencies than those that did not. A broad diversity of circulating cell subsets within innate and adaptive immune compartments were associated with CMV infection or protective CMV-specific CMI. While percentages of CMV (tetramer-stained)-specific T cells associated with high CMI responses and clinical protection, circulating CD3+CD8midCD56+ NK-T cells overall strongly associated with low CMI and subsequent infection. However, three NK-T cell subsets sharing the CD11b surface marker associated with CMV protection and correlated with strong anti-viral CMI frequencies in vitro. These data were validated in two external independent cohorts of kidney transplant recipients. Thus, we newly describe the kinetics of a novel NK-T cell subset that may have a protective role in post-transplantation CMV infection. Our findings pave the way to more mechanistic studies aimed at understanding the function of these cells in protection against CMV infection.
Assuntos
Infecções por Citomegalovirus , Transplante de Rim , Células T Matadoras Naturais , Humanos , Transplante de Rim/efeitos adversos , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/prevenção & controle , Infecções por Citomegalovirus/virologia , Infecções por Citomegalovirus/sangue , Pessoa de Meia-Idade , Masculino , Feminino , Adulto , Células T Matadoras Naturais/imunologia , Citomegalovirus/imunologia , Citomegalovirus/isolamento & purificação , Citometria de Fluxo , Imunofenotipagem , Idoso , Imunidade CelularRESUMO
Lesion scores on procurement donor biopsies are commonly used to guide organ utilization for deceased-donor kidneys. However, frozen sections present challenges for histological scoring, leading to inter- and intra-observer variability and inappropriate discard. Therefore, we constructed deep-learning based models to recognize kidney tissue compartments in hematoxylin & eosin-stained sections from procurement needle biopsies performed nationwide in years 2011-2020. To do this, we extracted whole-slide abnormality features from 2431 kidneys and correlated with pathologists' scores and transplant outcomes. A Kidney Donor Quality Score (KDQS) was derived and used in combination with recipient demographic and peri-transplant characteristics to predict graft loss or assist organ utilization. The performance on wedge biopsies was additionally evaluated. Our model identified 96% and 91% of normal/sclerotic glomeruli respectively; 94% of arteries/arterial intimal fibrosis; 90% of tubules. Whole-slide features of Sclerotic Glomeruli (GS)%, Arterial Intimal Fibrosis (AIF)%, and Interstitial Space Abnormality (ISA)% demonstrated strong correlations with corresponding pathologists' scores of all 2431 kidneys, but had superior associations with post-transplant estimated glomerular filtration rates in 2033 and graft loss in 1560 kidneys. The combination of KDQS and other factors predicted one- and four-year graft loss in a discovery set of 520 kidneys and a validation set of 1040 kidneys. By using the composite KDQS of 398 discarded kidneys due to "biopsy findings", we suggest that if transplanted, 110 discarded kidneys could have had similar survival to that of other transplanted kidneys. Thus, our composite KDQS and survival prediction models may facilitate risk stratification and organ utilization while potentially reducing unnecessary organ discard.
Assuntos
Aprendizado Profundo , Transplante de Rim , Obtenção de Tecidos e Órgãos , Humanos , Transplante de Rim/efeitos adversos , Estudos Retrospectivos , Seleção do Doador , Rim/patologia , Doadores de Tecidos , Biópsia , Fibrose , Sobrevivência de EnxertoRESUMO
Donor-recipient (D-R) mismatches outside of human leukocyte antigens (HLAs) contribute to kidney allograft loss, but the mechanisms remain unclear, specifically for intronic mismatches. We quantified non-HLA mismatches at variant-, gene-, and genome-wide scales from single nucleotide polymorphism (SNP) data of D-Rs from 2 well-phenotyped transplant cohorts: Genomics of Chronic Allograft Rejection (GoCAR; n = 385) and Clinical Trials in Organ Transplantation-01/17 (CTOT-01/17; n = 146). Unbiased gene-level screening in GoCAR uncovered the LIMS1 locus as the top-ranked gene where D-R mismatches associated with death-censored graft loss (DCGL). A previously unreported, intronic, LIMS1 haplotype of 30 SNPs independently associated with DCGL in both cohorts. Haplotype mismatches showed a dosage effect, and minor-allele introduction to major-allele-carrying recipients showed greater hazard of DCGL. The LIMS1 haplotype and the previously reported LIMS1 SNP rs893403 are expression quantitative trait loci (eQTL) in immune cells for GCC2 (not LIMS1), which encodes a protein involved in mannose-6-phosphase receptor (M6PR) recycling. Peripheral blood and T cell transcriptome analyses associated the GCC2 gene and LIMS1 SNPs with the TGF-ß1/SMAD pathway, suggesting a regulatory effect. In vitro GCC2 modulation impacted M6PR-dependent regulation of active TGF-ß1 and downstream signaling in T cells. Together, our data link LIMS1 locus D-R mismatches to DCGL via GCC2 eQTLs that modulate TGF-ß1-dependent effects on T cells.
Assuntos
Transplante de Rim , Humanos , Fator de Crescimento Transformador beta1/genética , Rejeição de Enxerto/genética , Rim , Doadores de Tecidos , Antígenos HLA , Sobrevivência de Enxerto/genética , Proteínas de Membrana , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas com Domínio LIM/genéticaRESUMO
Renal inflammation and fibrosis are the common pathways leading to progressive chronic kidney disease (CKD). We previously identified hematopoietic cell kinase (HCK) as upregulated in human chronic allograft injury promoting kidney fibrosis; however, the cellular source and molecular mechanisms are unclear. Here, using immunostaining and single cell sequencing data, we show that HCK expression is highly enriched in pro-inflammatory macrophages in diseased kidneys. HCK-knockout (KO) or HCK-inhibitor decreases macrophage M1-like pro-inflammatory polarization, proliferation, and migration in RAW264.7 cells and bone marrow-derived macrophages (BMDM). We identify an interaction between HCK and ATG2A and CBL, two autophagy-related proteins, inhibiting autophagy flux in macrophages. In vivo, both global or myeloid cell specific HCK-KO attenuates renal inflammation and fibrosis with reduces macrophage numbers, pro-inflammatory polarization and migration into unilateral ureteral obstruction (UUO) kidneys and unilateral ischemia reperfusion injury (IRI) models. Finally, we developed a selective boron containing HCK inhibitor which can reduce macrophage pro-inflammatory activity, proliferation, and migration in vitro, and attenuate kidney fibrosis in the UUO mice. The current study elucidates mechanisms downstream of HCK regulating macrophage activation and polarization via autophagy in CKD and identifies that selective HCK inhibitors could be potentially developed as a new therapy for renal fibrosis.
Assuntos
Nefrite , Insuficiência Renal Crônica , Obstrução Ureteral , Animais , Humanos , Camundongos , Autofagia , Fibrose , Inflamação/patologia , Rim/metabolismo , Ativação de Macrófagos , Camundongos Endogâmicos C57BL , Nefrite/metabolismo , Proteínas Proto-Oncogênicas c-hck/metabolismo , Insuficiência Renal Crônica/patologia , Obstrução Ureteral/metabolismoRESUMO
Anemia commonly occurs in systemic lupus erythematosus, a disease characterized by innate immune activation by nucleic acids. Overactivation of cytoplasmic sensors by self-DNA or RNA can cause erythroid cell death, while sparing other hematopoietic cell lineages. Whereas chronic inflammation is involved in this mechanism, less is known about the impact of systemic lupus erythematosus on the BM erythropoietic niche. We discovered that expression of the endosomal ssRNA sensor human TLR8 induces fatal anemia in Sle1.Yaa lupus mice. We observed that anemia was associated with a decrease in erythromyeloblastic islands and a block in differentiation at the CFU-E to proerythroblast transition in the BM. Single-cell RNAseq analyses of isolated BM erythromyeloblastic islands from human TLR8-expressing mice revealed that genes associated with essential central macrophage functions including adhesion and provision of nutrients were down-regulated. Although compensatory stress erythropoiesis occurred in the spleen, red blood cell half-life decreased because of hemophagocytosis. These data implicate the endosomal RNA sensor TLR8 as an additional innate receptor whose overactivation causes acquired failure of erythropoiesis via myeloid cell dysregulation.
Assuntos
Anemia , Lúpus Eritematoso Sistêmico , Animais , Humanos , Camundongos , Anemia/etiologia , Medula Óssea/metabolismo , RNA , Receptor 8 Toll-LikeRESUMO
Hyponatremia and salt wasting is a common occurance in patients with HIV/AIDS, however, the understanding of its contributing factors is limited. HIV viral protein R (Vpr) contributes to HIV-associated nephropathy. To investigate the effects of Vpr on the expression level of the Slc12a3 gene, encoding the Na-Cl cotransporter, which is responsible for sodium reabsorption in distal nephron segments, we performed single-nucleus RNA sequencing of kidney cortices from three wild-type (WT) and three Vpr-transgenic (Vpr Tg) mice. The results showed that the percentage of distal convoluted tubule (DCT) cells was significantly lower in Vpr Tg mice compared with WT mice (P < 0.05), and that in Vpr Tg mice, Slc12a3 expression was not different in DCT cell cluster. The Pvalb+ DCT1 subcluster had fewer cells in Vpr Tg mice compared with WT (P < 0.01). Immunohistochemistry demonstrated fewer Slc12a3+ Pvalb+ DCT1 segments in Vpr Tg mice. Differential gene expression analysis comparing Vpr Tg and WT in the DCT cluster showed Ier3, an inhibitor of apoptosis, to be the most downregulated gene. These observations demonstrate that the salt-wasting effect of Vpr in Vpr Tg mice is mediated by loss of Slc12a3+ Pvalb+ DCT1 segments via apoptosis dysregulation.
RESUMO
Chronic kidney disease (CKD) is a common cause of morbidity in human immunodeficiency virus (HIV)-positive individuals. HIV infection leads to a wide spectrum of kidney cell damage, including tubular epithelial cell (TEC) injury. Among the HIV-1 proteins, the pathologic effects of viral protein R (Vpr) are well established and include DNA damage response, cell cycle arrest, and cell death. Several in vitro studies have unraveled the molecular pathways driving the cytopathic effects of Vpr in tubular epithelial cells. However, the in vivo effects of Vpr on tubular injury and CKD pathogenesis have not been thoroughly investigated. Here, we use a novel inducible tubular epithelial cell-specific Vpr transgenic mouse model to show that Vpr expression leads to progressive tubulointerstitial damage, interstitial inflammation and fibrosis, and tubular cyst development. Importantly, Vpr-expressing tubular epithelial cells displayed significant hypertrophy, aberrant cell division, and atrophy; all reminiscent of tubular injuries observed in human HIV-associated nephropathy (HIVAN). Single-cell RNA sequencing analysis revealed the Vpr-mediated transcriptomic responses in specific tubular subsets and highlighted the potential multifaceted role of p53 in the regulation of cell metabolism, proliferation, and death pathways in Vpr-expressing tubular epithelial cells. Thus, our study demonstrates that HIV Vpr expression in tubular cells is sufficient to induce HIVAN-like tubulointerstitial damage and fibrosis, independent of glomerulosclerosis and proteinuria. Additionally, as this new mouse model develops progressive CKD with diffuse fibrosis and kidney failure, it can serve as a useful tool to examine the mechanisms of kidney disease progression and fibrosis in vivo.
Assuntos
Nefropatia Associada a AIDS , Produtos do Gene vpr , Infecções por HIV , HIV-1 , Insuficiência Renal Crônica , Animais , Humanos , Camundongos , Nefropatia Associada a AIDS/genética , Modelos Animais de Doenças , Produtos do Gene vpr/genética , Produtos do Gene vpr/metabolismo , Produtos do Gene vpr/farmacologia , Infecções por HIV/complicações , HIV-1/genética , HIV-1/metabolismo , Proteínas do Vírus da Imunodeficiência Humana , Camundongos Transgênicos , Insuficiência Renal Crônica/complicaçõesRESUMO
Podocyte injury and loss are key drivers of primary and secondary glomerular diseases, such as focal segmental glomerulosclerosis (FSGS) and diabetic kidney disease (DKD). We previously demonstrated the renoprotective role of protein S (PS) and its cognate tyrosine-protein kinase receptor, TYRO3, in models of FSGS and DKD and that their signaling exerts antiapoptotic and antiinflammatory effects to confer protection against podocyte loss. Among the 3 TAM receptors (TYRO3, AXL, and MER), only TYRO3 expression is largely restricted to podocytes, and glomerular TYRO3 mRNA expression negatively correlates with human glomerular disease progression. Therefore, we posited that the agonistic PS/TYRO3 signaling could serve as a potential therapeutic approach to attenuate glomerular disease progression. As PS function is not limited to TYRO3-mediated signal transduction but includes its anticoagulant activity, we focused on the development of TYRO3 agonists as an optimal therapeutic approach to glomerular disease. Among the small-molecule TYRO3 agonistic compounds screened, compound 10 (C-10) showed a selective activation of TYRO3 without any effects on AXL or MER. We also confirmed that C-10 directly binds to TYRO3, but not the other receptors. In vivo, C-10 attenuated proteinuria, glomerular injury, and podocyte loss in mouse models of Adriamycin-induced nephropathy and a db/db model of type 2 diabetes. Moreover, these renoprotective effects of C-10 were lost in Tyro3-knockout mice, indicating that C-10 is a selective agonist of TYRO3 activity that mitigates podocyte injury and glomerular disease. Therefore, C-10, a TYRO3 agonist, could be potentially developed as a new therapy for glomerular disease.
Assuntos
Diabetes Mellitus Tipo 2 , Glomerulosclerose Segmentar e Focal , Podócitos , Camundongos , Animais , Humanos , Glomerulosclerose Segmentar e Focal/tratamento farmacológico , Glomerulosclerose Segmentar e Focal/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glomérulos Renais/metabolismo , Podócitos/metabolismo , Camundongos Knockout , Proteínas de Transporte/metabolismo , Progressão da Doença , Receptores Proteína Tirosina Quinases/metabolismoRESUMO
The pathogenesis of diabetic kidney disease (DKD) involves multifactorial processes that converge to initiate and advance the disease. Although DKD is not typically classified as an inflammatory glomerular disease, mounting evidence supports the involvement of kidney inflammation as a key contributor in DKD pathogenesis, particularly through macrophages. However, detailed identification and corresponding phenotypic changes of macrophages in DKD remain poorly understood. To capture the gene expression changes in specific macrophage cell subsets in early DKD, we performed single-cell transcriptomic analysis of CD45-enriched kidney immune cells from type 1 diabetic OVE26 mice at two time points during the disease development. We also undertook a focused analysis of mononuclear phagocytes (macrophages and dendritic cells). Our results show increased resident and infiltrating macrophage subsets in the kidneys of mice with diabetes over time, with heightened expression of pro-inflammatory or anti-inflammatory genes in a subset-specific manner. Further analysis of macrophage polarization states in each subset in the kidneys showed changes consistent with the continuum of activation and differentiation states, with gene expression tending to shift toward undifferentiated phenotypes but with increased M1-like inflammatory phenotypes over time. By deconvolution analysis of RNAseq samples and by immunostaining of biopsies from patients with DKD, we further confirmed a differential expression of select genes in specific macrophage subsets essentially recapitulating the studies in mice. Thus, our study provides a comprehensive analysis of macrophage transcriptomic profiles in early DKD that underscores the dynamic macrophage phenotypes in disease progression.
Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Camundongos , Animais , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Rim/patologia , Glomérulos Renais/patologia , Ativação de Macrófagos , Macrófagos/metabolismo , Diabetes Mellitus/metabolismoRESUMO
BACKGROUND: Among patients with COVID-19, kidney transplant recipients (KTRs) have poor outcomes compared with non-KTRs. To provide insight into management of immunosuppression during acute illness, we studied immune signatures from the peripheral blood during and after COVID-19 infection from a multicenter KTR cohort. METHODS: We ascertained clinical data by chart review. A single sample of blood was collected for transcriptome analysis. Total RNA was poly-A selected and RNA was sequenced to evaluate transcriptome changes. We also measured cytokines and chemokines of serum samples collected during acute infection. RESULTS: A total of 64 patients with COVID-19 in KTRs were enrolled, including 31 with acute COVID-19 (<4 weeks from diagnosis) and 33 with post-acute COVID-19 (>4 weeks postdiagnosis). In the blood transcriptome of acute cases, we identified genes in positive or negative association with COVID-19 severity scores. Functional enrichment analyses showed upregulation of neutrophil and innate immune pathways but downregulation of T cell and adaptive immune activation pathways. This finding was independent of lymphocyte count, despite reduced immunosuppressant use in most KTRs. Compared with acute cases, post-acute cases showed "normalization" of these enriched pathways after 4 weeks, suggesting recovery of adaptive immune system activation despite reinstitution of immunosuppression. Analysis of the non-KTR cohort with COVID-19 showed significant overlap with KTRs in these functions. Serum inflammatory cytokines followed an opposite trend (i.e., increased with disease severity), indicating that blood lymphocytes are not the primary source. CONCLUSIONS: The blood transcriptome of KTRs affected by COVID-19 shows decreases in T cell and adaptive immune activation pathways during acute disease that, despite reduced immunosuppressant use, associate with severity. These pathways show recovery after acute illness.
Assuntos
COVID-19 , Transplante de Rim , Humanos , SARS-CoV-2 , COVID-19/genética , Transcriptoma , Doença Aguda , Transplantados , Imunossupressores/uso terapêutico , Citocinas , RNARESUMO
BACKGROUND: Long Interspersed Nuclear Element-1 (LINE-1, L1) is increasingly regarded as a genetic risk for lung cancer. Transcriptionally active LINE-1 forms a L1-gene chimeric transcript (LCTs), through somatic L1 retrotransposition (LRT) or L1 antisense promoter (L1-ASP) activation, to play an oncogenic role in cancer progression. METHODS: Here, we developed Retrotransposon-gene fusion estimation program (ReFuse), to identify and quantify LCTs in RNA sequencing data from TCGA lung cancer cohort (n = 1146) and a single cell RNA sequencing dataset then further validated those LCTs in an independent cohort (n = 134). We next examined the functional roles of a cancer specific LCT (L1-FGGY) in cell proliferation and tumor progression in LUSC cell lines and mice. RESULTS: The LCT events correspond with specific metabolic processes and mitochondrial functions and was associated with genomic instability, hypomethylation, tumor stage and tumor immune microenvironment (TIME). Functional analysis of a tumor specific and frequent LCT involving FGGY (L1-FGGY) reveal that the arachidonic acid (AA) metabolic pathway was activated by the loss of FGGY through the L1-FGGY chimeric transcript to promote tumor growth, which was effectively targeted by a combined use of an anti-HIV drug (NVR) and a metabolic inhibitor (ML355). Lastly, we identified a set of transcriptomic signatures to stratify the LUSC patients with a higher risk for poor outcomes who may benefit from treatments using NVR alone or combined with an anti-metabolism drug. CONCLUSIONS: This study is the first to characterize the role of L1 in metabolic reprogramming of lung cancer and provide rationale for L1-specifc prognosis and potential for a therapeutic strategy for treating lung cancer. TRIAL REGISTRATION: Study on the mechanisms of the mobile element L1-FGGY promoting the proliferation, invasion and immune escape of lung squamous cell carcinoma through the 12-LOX/Wnt pathway, Ek2020111. Registered 27 March 2020 - Retrospectively registered.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Prognóstico , Microambiente Tumoral/genéticaRESUMO
BACKGROUND: Kidney transplant recipients (KTRs) with COVID-19 have poor outcomes compared to non-KTRs. To provide insight into management of immunosuppression during acute illness, we studied immune signatures from the peripheral blood during and after COVID-19 infection from a multicenter KTR cohort.â¡. METHODS: Clinical data were collected by chart review. PAXgene blood RNA was poly-A selected and RNA sequencing was performed to evaluate transcriptome changes. RESULTS: A total of 64 cases of COVID-19 in KTRs were enrolled, including 31 acute cases (< 4 weeks from diagnosis) and 33 post-acute cases (>4 weeks). In the blood transcriptome of acute cases, we identified differentially expressed genes (DEGs) in positive or negative association COVID-19 severity scores. Functional enrichment analyses showed upregulation of neutrophil and innate immune pathways, but downregulation of T-cell and adaptive immune-activation pathways proportional to severity score. This finding was independent of lymphocyte count and despite reduction in immunosuppression (IS) in most KTRs. Comparison with post-acute cases showed "normalization" of these enriched pathways after >4 weeks, suggesting recovery of adaptive immune system activation despite reinstitution of IS. The latter analysis was adjusted for COVID-19 severity score and lymphocyte count. DEGs associated with worsening disease severity in a non-KTR cohort with COVID-19 (GSE152418) showed significant overlap with KTRs in these identified enriched pathways. CONCLUSION: Blood transcriptome of KTRs affected by COVID-19 shows decrease in T-cell and adaptive immune activation pathways during acute disease that associate with severity despite IS reduction and show recovery after acute illness. SIGNIFICANCE STATEMENT: Kidney transplant recipients (KTRs) are reported to have worse outcomes with COVID-19, and empiric reduction of maintenance immunosuppression is pursued. Surprisingly, reported rates of acute rejection have been low despite reduced immunosuppression. We evaluated the peripheral blood transcriptome of 64 KTRs either during or after acute COVID-19. We identified transcriptomic signatures consistent with suppression of adaptive T-cell responses which significantly associated with disease severity and showed evidence of recovery after acute disease, even after adjustment for lymphocyte number. Our transcriptomic findings of immune-insufficiency during acute COVID-19 provide an explanation for the low rates of acute rejection in KTRs despite reduced immunosuppression. Our data support the approach of temporarily reducing T -cell-directed immunosuppression in KTRs with acute COVID-19.
RESUMO
Interstitial fibrosis, tubular atrophy, and inflammation are major contributors to kidney allograft failure. Here we sought an objective, quantitative pathological assessment of these lesions to improve predictive utility and constructed a deep-learning-based pipeline recognizing normal vs. abnormal kidney tissue compartments and mononuclear leukocyte infiltrates. Periodic acid- Schiff stained slides of transplant biopsies (60 training and 33 testing) were used to quantify pathological lesions specific for interstitium, tubules and mononuclear leukocyte infiltration. The pipeline was applied to the whole slide images from 789 transplant biopsies (478 baseline [pre-implantation] and 311 post-transplant 12-month protocol biopsies) in two independent cohorts (GoCAR: 404 patients, AUSCAD: 212 patients) of transplant recipients to correlate composite lesion features with graft loss. Our model accurately recognized kidney tissue compartments and mononuclear leukocytes. The digital features significantly correlated with revised Banff 2007 scores but were more sensitive to subtle pathological changes below the thresholds in the Banff scores. The Interstitial and Tubular Abnormality Score (ITAS) in baseline samples was highly predictive of one-year graft loss, while a Composite Damage Score in 12-month post-transplant protocol biopsies predicted later graft loss. ITASs and Composite Damage Scores outperformed Banff scores or clinical predictors with superior graft loss prediction accuracy. High/intermediate risk groups stratified by ITASs or Composite Damage Scores also demonstrated significantly higher incidence of estimated glomerular filtration rate decline and subsequent graft damage. Thus, our deep-learning approach accurately detected and quantified pathological lesions from baseline or post-transplant biopsies and demonstrated superior ability for prediction of post-transplant graft loss with potential application as a prevention, risk stratification or monitoring tool.
Assuntos
Aprendizado Profundo , Transplante de Rim , Biópsia , Rejeição de Enxerto/patologia , Sobrevivência de Enxerto , Humanos , Rim/patologia , Transplante de Rim/efeitos adversosRESUMO
Angiotensin receptor blockers (ARBs) and sodium-glucose cotransporter 2 inhibitors (SGLT2i) have been used as the standard therapy for patients with diabetic kidney disease (DKD). However, how these two drugs possess additive renoprotective effects remains unclear. Here, we conducted single-cell RNA sequencing to profile the kidney cell transcriptome of db/db mice treated with vehicle, ARBs, SGLT2i, or ARBs plus SGLT2i, using db/m mice as control. We identified 10 distinct clusters of kidney cells with predominant proximal tubular (PT) cells. We found that ARBs had more anti-inflammatory and anti-fibrotic effects, while SGLT2i affected more mitochondrial function in PT. We also identified a new PT subcluster, was increased in DKD, but reversed by the treatments. This new subcluster was also confirmed by immunostaining of mouse and human kidneys with DKD. Together, our study reveals kidney cell-specific gene signatures in response to ARBs and SGLT2i and identifies a new PT subcluster, which provides new insight into the pathogenesis of DKD.