Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(16): e2303379, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38380561

RESUMO

Patient-Derived Organoids (PDO) and Xenografts (PDX) are the current gold standards for patient-derived models of cancer (PDMC). Nevertheless, how patient tumor cells evolve in these models and the impact on drug response remains unclear. Herein, the transcriptomic and chromatin accessibility landscapes of matched colorectal cancer (CRC) PDO, PDX, PDO-derived PDX (PDOX), and original patient tumors (PT) are compared. Two major remodeling axes are discovered. The first axis delineates PDMC from PT, and the second axis distinguishes PDX and PDO. PDOX are more similar to PDX than PDO, indicating the growth environment is a driving force for chromatin adaptation. Transcription factors (TF) that differentially bind to open chromatins between matched PDO and PDOX are identified. Among them, KLF14 and EGR2 footprints are enriched in PDOX relative to matched PDO, and silencing of KLF14 or EGR2 promoted tumor growth. Furthermore, EPHA4, a shared downstream target gene of KLF14 and EGR2, altered tumor sensitivity to MEK inhibitor treatment. Altogether, patient-derived CRC cells undergo both common and distinct chromatin remodeling in PDO and PDX/PDOX, driven largely by their respective microenvironments, which results in differences in growth and drug sensitivity and needs to be taken into consideration when interpreting their ability to predict clinical outcome.


Assuntos
Montagem e Desmontagem da Cromatina , Neoplasias Colorretais , Organoides , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Humanos , Montagem e Desmontagem da Cromatina/genética , Camundongos , Animais , Organoides/metabolismo , Modelos Animais de Doenças
2.
Ann Hematol ; 102(2): 369-383, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36460794

RESUMO

Multiple myeloma (MM) remains an incurable disease and there is an unmet medical need for novel therapeutic drugs that do not share similar mechanisms of action with currently available agents. Sphingosine kinase 2 (SK2) is an innovative molecular target for anticancer therapy. We previously reported that treatment with SK2 inhibitor opaganib inhibited myeloma tumor growth in vitro and in vivo in a mouse xenograft model. In the current study, we performed a phase I study of opaganib in patients with relapsed/refractory multiple myeloma (RRMM). Thirteen patients with RRMM previously treated with immunomodulatory agents and proteasome inhibitors were enrolled and treated with single-agent opaganib at three oral dosing regimens (250 mg BID, 500 mg BID, or 750 mg BID, 28 days as a cycle). Safety and maximal tolerated dose (MTD) were determined. Pharmacokinetics, pharmacodynamics, and correlative studies were also performed. Opaganib was well tolerated up to a dose of 750 mg BID. The most common possibly related adverse event (AE) was decreased neutrophil counts. There were no serious AEs considered to be related to opaganib. MTD was determined as at least 750 mg BID. On an intent-to-treat basis, one patient (7.7%) in the 500 mg BID dose cohort showed a very good partial response, and one other patient (7.7%) achieved stable disease for 3 months. SK2 is an innovative molecular target for antimyeloma therapy. The first-in-class SK2 inhibitor opaganib is generally safe for administration to RRMM patients, and has potential therapeutic activity in these patients. Clinicaltrials.gov: NCT02757326.


Assuntos
Mieloma Múltiplo , Humanos , Animais , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/uso terapêutico , Inibidores de Proteassoma/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Dexametasona
3.
Exp Hematol Oncol ; 11(1): 83, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316713

RESUMO

BACKGROUND: Thioredoxin-1 (TXN1) is one of the major cellular antioxidants in mammals and is involved in a wide range of physiological cellular responses. However, little is known about the roles and the underlying molecular mechanisms of TXN1 in the regulation of hematopoietic stem/progenitor cells (HSPCs). METHODS: TXN1 conditional knockout mice (ROSA-CreER-TXN1fl/fl) and TXN1fl/fl control mice were used. The mice were treated with tamoxifen and the number and biological functions of HSPCs were measured by flow cytometry, PCR and western blot. Limiting dilution competitive transplantation with sorted HSCs and serial transplantations were performed to assess the effects of TXN1 knockout on HSC self-renewal and long-term reconstitutional capacity. RNA sequencing (RNA-seq) was performed to investigate the downstream molecular pathways of TXN1 deletion in murine HSPCs. CRISPR/Cas9 knockout experiments were performed in vitro in EML murine hematopoietic stem/progenitor cell line to investigate the effects of TXN1 and/or TP53 deletion on cell survival, senescence and colony forming units. TP53 protein degradation assay, CHiP PCR and PGL3 firefly/renilla reporter assay were performed. The effects of TXN1 on various molecular pathways relevant to HSC radiation protection were examined in vitro and in vivo. RESULTS: TXN1-TP53 tumor suppressor axis regulates HSPC biological fitness. Deletion of TXN1 in HSPCs using in vivo and in vitro models activates TP53 signaling pathway, and attenuates HSPC capacity to reconstitute hematopoiesis. Furthermore, we found that knocking out of TXN1 renders HSPCs more sensitive to radiation and treatment with recombinant TXN1 promotes the proliferation and expansion of HSPCs. CONCLUSIONS: Our findings suggest that TXN1-TP53 axis acts as a regulatory mechanism in HSPC biological functions. Additionally, our study demonstrates the clinical potential of TXN1 for enhancing hematopoietic recovery in hematopoietic stem cell transplant and protecting HSPCs from radiation injury.

4.
Front Immunol ; 12: 754083, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712241

RESUMO

Myeloid-derived suppressor cells (MDSCs) are a hetero geneous group of cells, which can suppress the immune response, promote tumor progression and impair the efficacy of immunotherapies. Consequently, the pharmacological targeting of MDSC is emerging as a new immunotherapeutic strategy to stimulate the natural anti-tumor immune response and potentiate the efficacy of immunotherapies. Herein, we leveraged genetically modified models and a small molecule inhibitor to validate Calcium-Calmodulin Kinase Kinase 2 (CaMKK2) as a druggable target to control MDSC accumulation in tumor-bearing mice. The results indicated that deletion of CaMKK2 in the host attenuated the growth of engrafted tumor cells, and this phenomenon was associated with increased antitumor T cell response and decreased accumulation of MDSC. The adoptive transfer of MDSC was sufficient to restore the ability of the tumor to grow in Camkk2-/- mice, confirming the key role of MDSC in the mechanism of tumor rejection. In vitro studies indicated that blocking of CaMKK2 is sufficient to impair the yield of MDSC. Surprisingly, MDSC generated from Camkk2-/- bone marrow cells also showed a higher ability to terminally differentiate toward more immunogenic cell types (e.g inflammatory macrophages and dendritic cells) compared to wild type (WT). Higher intracellular levels of reactive oxygen species (ROS) accumulated in Camkk2-/- MDSC, increasing their susceptibility to apoptosis and promoting their terminal differentiation toward more mature myeloid cells. Mechanistic studies indicated that AMP-activated protein kinase (AMPK), which is a known CaMKK2 proximal target controlling the oxidative stress response, fine-tunes ROS accumulation in MDSC. Accordingly, failure to activate the CaMKK2-AMPK axis can account for the elevated ROS levels in Camkk2-/- MDSC. These results highlight CaMKK2 as an important regulator of the MDSC lifecycle, identifying this kinase as a new druggable target to restrain MDSC expansion and enhance the efficacy of anti-tumor immunotherapy.


Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/fisiologia , Células Supressoras Mieloides/enzimologia , Proteínas de Neoplasias/fisiologia , Proteínas Quinases Ativadas por AMP/fisiologia , Transferência Adotiva , Animais , Apoptose , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/deficiência , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Feminino , Depleção Linfocítica , Linfoma/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias/metabolismo , Células Supressoras Mieloides/fisiologia , Células Supressoras Mieloides/transplante , Mielopoese , Espécies Reativas de Oxigênio , Microambiente Tumoral
5.
Adv Sci (Weinh) ; 7(5): 1900860, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32154065

RESUMO

The roles of mitochondrial dysfunction in carcinogenesis remain largely unknown. The effects of PTEN-induced putative kinase 1 (PINK1)-dependent mitophagy on the pathogenesis of multiple myeloma (MM) are determined. The levels of the PINK1-dependent mitophagy markers PINK1 and parkin RBR E3 ubiquitin protein ligase (PARK2) in CD138+ plasma cells are reduced in patients with MM and correlate with clinical outcomes in myeloma patients. Moreover, the induction of PINK1-dependent mitophagy with carbonylcyanide-m-chlorophenylhydrazone (CCCP) or salinomycin, or overexpression of PINK1 leads to inhibition of transwell migration, suppression of myeloma cell homing to calvarium, and decreased osteolytic bone lesions. Furthermore, genetic deletion of pink1 accelerates myeloma development in a spontaneous X-box binding protein-1 spliced isoform (XBP-1s) transgenic myeloma mouse model and in VK*MYC transplantable myeloma recipient mice. Additionally, treatment with salinomycin shows significant antimyeloma activities in vivo in murine myeloma xenograft models. Finally, the effects of PINK1-dependent mitophagy on myeloma pathogenesis are driven by the activation of the Mps one binder kinase activator (MOB1B)-mediated Hippo pathway and the subsequent downregulation of Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) expression. These data provide direct evidence that PINK1-dependent mitophagy plays a critical role in the pathogenesis of MM and is a potential therapeutic target.

6.
AAPS PharmSciTech ; 20(2): 88, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30675630

RESUMO

Our aim was to investigate the cellular uptake, in vitro cytotoxicity and bioavailability of ginsenoside-modified nanostructured lipid carrier loaded with curcumin (G-NLC). The formulation was prepared by melt emulsification technique, in which water was added to the melted lipids and homogenized to give a uniform suspension of NLC (without ginsenoside) and G-NLC. Cellular uptake of curcumin in two colon cancer cell lines (HCT116 and HT29) was increased when administered using both NLC and G-NLC compared to control (curcumin dissolved into DMSO) as measured by fluorescence microscopy. Ginsenoside modification resulted in 2.0-fold and 1.4-fold increases in fluorescence intensity in HCT116 and HT29 cell lines, respectively, compared to plain NLC. In vitro cytotoxicity (assessed by MTT assay) had a dose-dependent relationship with curcumin concentration for both NLC and G-NLC. Although G-NLC was taken up more readily in HCT116 cells, ginsenoside modification did not produce a significant increase in cytotoxic effect; a significant increase was observed in HT29 cells. Oral administration of G-NLC in ten colon cancer patients produced an appreciable plasma level of unbound curcumin (2.9 ng/mL). In conclusion, introduction of ginsenoside into NLC enhanced the cellular uptake and cytotoxicity of curcumin as well as its oral bioavailability, and this strategy can be used to improve clinical outcomes in the treatment of colon cancer with similar genotype to HT29.


Assuntos
Curcumina/administração & dosagem , Ginsenosídeos/administração & dosagem , Lipídeos/administração & dosagem , Animais , Disponibilidade Biológica , Sobrevivência Celular/efeitos dos fármacos , Curcumina/farmacocinética , Curcumina/farmacologia , Portadores de Fármacos , Feminino , Células HCT116 , Humanos , Masculino , Nanoestruturas/administração & dosagem
7.
Cancer Med ; 7(7): 3257-3268, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29761903

RESUMO

Multiple myeloma (MM) remains an incurable disease in need of the development of novel therapeutic agents and drug combinations. ABT-199 is a specific Bcl-2 inhibitor in clinical trials for MM; however, its activity as a single agent was limited to myeloma patients with the t(11;14) translocation who acquire resistance due to co-expression of Mcl-1 and Bcl-xL. These limitations preclude its use in a broader patient population. We have recently found that a sphingosine kinase 2-specific inhibitor (ABC294640) induces apoptosis in primary human CD138+ cells and MM cell lines. ABC294640 is currently in phase I/II clinical trials for myeloma (clinicaltrials.gov: #NCT01410981). Interestingly, ABC294640 down-regulates c-Myc and Mcl-1, but does not have any effects on Bcl-2. We first evaluated the combinatorial anti-myeloma effect of ABC294640 and ABT-199 in vitro in 7 MM cell lines, all of which harbor no t(11;14) translocation. Combination index calculation demonstrated a synergistic anti-myeloma effect of the combination of ABC294640 and ABT-199. This synergistic anti-myeloma effect was maintained even in the presence of bone marrow (BM) stromal cells. The combination of ABC294640 and ABT-199 led to enhanced cleavage of PARP and caspase-3/9 and increased Annexin-V expression, consistent with the induction of apoptosis by the combination treatment. In addition, the combination of ABC294640 and ABT-199 resulted in the down-regulation of the anti-apoptotic proteins Mcl-1, Bcl-2, and Bcl-xL and the cleavage of Bax and Bid. The combination induced both the mitochondrial mediated- and caspase-mediated apoptosis pathways. Finally, the combination of ABC294640 and ABT-199 resulted in augmented anti-myeloma effect in vivo in a mouse xenograft model. These findings demonstrate that the co-administration of ABC294640 and ABT-199 exhibits synergistic anti-myeloma activity in vitro and in vivo, providing justification for a clinical study of this novel combination in patients with relapsed/refractory multiple myeloma.

8.
Stem Cell Res Ther ; 8(1): 263, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29141658

RESUMO

BACKGROUND: Radiation exposure poses a significant threat to public health. Hematopoietic injury is one of the major manifestations of acute radiation sickness. Protection and/or mitigation of hematopoietic stem cells (HSCs) from radiation injury is an important goal in the development of medical countermeasure agents (MCM). We recently identified thioredoxin (TXN) as a novel molecule that has marked protective and proliferative effects on HSCs. In the current study, we investigated the effectiveness of TXN in rescuing mice from a lethal dose of total body radiation (TBI) and in enhancing hematopoietic reconstitution following a lethal dose of irradiation. METHODS: We used in-vivo and in-vitro methods to understand the biological and molecular mechanisms of TXN on radiation mitigation. BABL/c mice were used for the survival study and a flow cytometer was used to quantify the HSC population and cell senescence. A hematology analyzer was used for the peripheral blood cell count, including white blood cells (WBCs), red blood cells (RBCs), hemoglobin, and platelets. Colony forming unit (CFU) assay was used to study the colongenic function of HSCs. Hematoxylin and eosin staining was used to determine the bone marrow cellularity. Senescence-associated ß-galactosidase assay was used for cell senescence. Western blot analysis was used to evaluate the DNA damage and senescence protein expression. Immunofluorescence staining was used to measure the expression of γ-H2AX foci for DNA damage. RESULTS: We found that administration of TXN 24 h following irradiation significantly mitigates BALB/c mice from TBI-induced death: 70% of TXN-treated mice survived, whereas only 25% of saline-treated mice survived. TXN administration led to enhanced recovery of peripheral blood cell counts, bone marrow cellularity, and HSC population as measured by c-Kit+Sca-1+Lin- (KSL) cells, SLAM + KSL cells and CFUs. TXN treatment reduced cell senescence and radiation-induced double-strand DNA breaks in both murine bone marrow lineage-negative (Lin-) cells and primary fibroblasts. Furthermore, TXN decreased the expression of p16 and phosphorylated p38. Our data suggest that TXN modulates diverse cellular processes of HSCs. CONCLUSIONS: Administration of TXN 24 h following irradiation mitigates radiation-induced lethality. To the best of our knowledge, this is the first report demonstrating that TXN reduces radiation-induced lethality. TXN shows potential utility in the mitigation of radiation-induced hematopoietic injury.


Assuntos
Hematopoese/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Lesões Experimentais por Radiação/prevenção & controle , Protetores contra Radiação/farmacologia , Tiorredoxinas/farmacologia , Irradiação Corporal Total , Animais , Antígenos Ly/genética , Antígenos Ly/metabolismo , Biomarcadores/metabolismo , Contagem de Células Sanguíneas , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Medula Óssea/patologia , Medula Óssea/efeitos da radiação , Linhagem Celular , Senescência Celular/efeitos dos fármacos , Senescência Celular/efeitos da radiação , Ensaio de Unidades Formadoras de Colônias , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Expressão Gênica , Hematócrito , Hematopoese/genética , Hematopoese/efeitos da radiação , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Células-Tronco Hematopoéticas/efeitos da radiação , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Lesões Experimentais por Radiação/genética , Lesões Experimentais por Radiação/mortalidade , Lesões Experimentais por Radiação/patologia , Proteínas Recombinantes/farmacologia , Análise de Sobrevida , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Drug Deliv ; 24(1): 1262-1272, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28891336

RESUMO

Since breast cancer is one of the most lethal malignancies, targeted strategies are urgently needed. In this study, we report the enhanced therapeutic efficacy of docetaxel (DTX) when combined with polyunsaturated fatty acids (PUFA) for effective treatment of multi-resistant breast cancers. Folic acid (FA)-conjugated PUFA-based lipid nanoparticles (FA-PLN/DTX) was developed. The physicochemical properties, in vitro uptake, in vitro cytotoxicity, and in vivo anticancer activity of FA-PLN/DTX were evaluated. FA-PLN/DTX could efficiently target and treat human breast tumor xenografts in vivo. They showed high payload carrying capacity with controlled release characteristics and selective endocytic uptake in folate receptor-overexpressing MCF-7 and MDA-MB-231 cells. PUFA synergistically improved the anticancer efficacy of DTX in both tested cancer cell lines by inducing a G2/M phase arrest and cell apoptosis. Combination of PUFA and DTX remarkably downregulated the expression levels of pro-apoptotic and anti-apoptotic markers, and blocked the phosphorylation of AKT signaling pathways. Compared to DTX alone, FA-PLN/DTX showed superior antitumor efficacy, with no signs of toxic effects in cancer xenograft animal models. We propose that PUFA could improve the therapeutic efficacy of anticancer agents in cancer therapy. Further studies are necessary to fully understand these findings and achieve clinical translation.


Assuntos
Nanoestruturas , Animais , Antineoplásicos , Linhagem Celular Tumoral , Docetaxel , Ácidos Graxos Insaturados , Humanos , Taxoides
10.
Anticancer Res ; 37(1): 103-114, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28011480

RESUMO

AIM: To investigate the possibility of enhancing an anti-metastatic effect of 5-fluorouracil (5-FU) on colorectal cancer (CRC) cells by combining it with continuous calcium supplementation. MATERIALS AND METHODS: Optimal doses of 5-FU with/without lactate salt (CaLa) were determined via clonogenicity and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays using human CRC cells cultured on normal or low-attachment plates. Invasion and migration assays confirmed the enhanced anti-metastatic effect of combining 5-FU and CaLa. Western blot analysis for elements of the focal adhesion kinase (FAK) signaling cascade and epithelial-mesenchymal transition (EMT) markers was used to investigate the underlying mechanism. RESULTS: 5-FU (2.5 µM) had no antitumor activity against unanchored CRC cells, while it significantly suppressed anchorage-dependent cell proliferation. In contrast, treatment with CaLa (2.5 mM), alone and in combination with 5-FU, exerted antitumor activity against both anchored and unanchored CRC cells via calcium-mediated FAK proteolysis and inhibition of EMT markers, such as vimentin and SNAIL. CONCLUSION: Calcium supplementation represents a method of enhancing the potency of existing antitumor agents such as 5-FU, augmenting their clinical effectiveness.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Compostos de Cálcio/farmacologia , Movimento Celular/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Fluoruracila/farmacologia , Quinase 1 de Adesão Focal/metabolismo , Lactatos/farmacologia , Biomarcadores Tumorais/metabolismo , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/patologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Células HCT116 , Células HT29 , Humanos , Invasividade Neoplásica , Metástase Neoplásica , Proteólise , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
11.
Acta Biomater ; 42: 220-231, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27395829

RESUMO

UNLABELLED: Novel nanomaterials for the intracellular transport of therapeutic cargos have been actively sought to effectively breach cell-membrane barriers. In this study we developed novel self-micellizing anticancer lipid (SMAL)-based pro-apoptotic nanoparticles (NPs) that enhance the accumulation and chemotherapeutic efficacy of oxaliplatin (OL) in colorectal cancer cells (CRCs). We demonstrated that NPs with special affinity to caveolae could be designed and based on this specificity, NPs effectively differentiated between endothelial cells (tumor cells) and epithelial cells, without the need for a cell-specific targeting moiety. We demonstrated a remarkable uptake of OL-loaded SMAL NPs (SMAL-OL) in HCT116 and HT-29 cells via the caveolae-mediated endocytosis (CvME) pathway. The higher accumulation of SMAL-OL in the intracellular environment resulted in a significantly elevated anticancer effect compared to that of free OL. Cell cycle analysis proved G2/M phase arrest, along with substantial presence of cells in the sub-G1 phase. An immunoblot analysis indicated an upregulation of pro-apoptotic markers (Bax; caspase-3; caspase-9; and PARP1) and downregulation of Bcl-xl and the PI3K/AKT/mTOR complex, indicating a possible intrinsic apoptotic signaling pathway. Overall, the ability of SMAL NPs to confer preferential specificity towards the cell surface domain could offer an exciting means of targeted delivery without the need for receptor-ligand-type strategies. STATEMENT OF SIGNIFICANCE: In this work, we developed a novel self-micellizing anticancer lipid (SMAL)-based pro-apoptotic nanoparticles (NPs) that enhance the accumulation and chemotherapeutic efficacy of oxaliplatin (OL) in colorectal cancer cells. We demonstrated that NPs with special affinity to caveolae could be realized and based on this specificity, NPs effectively differentiated between endothelial cells (tumor cells) and epithelial cells, without the need for a cell-specific targeting moiety. In addition, oxaliplatin-loaded SMAL were efficiently endocytosed by the cancer cells and represent a significant breakthrough as an effective drug delivery system with promising potential in cancer therapy. We believe this work holds promising potential for the development of next generation of multifunctional nanocarriers for an exciting means of targeted delivery without the need for receptor-ligand-type strategies.


Assuntos
Antineoplásicos/uso terapêutico , Cavéolas/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Lipídeos/uso terapêutico , Micelas , Nanopartículas/química , Nanotecnologia/métodos , Compostos Organoplatínicos/uso terapêutico , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Cavéolas/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/patologia , Sinergismo Farmacológico , Endocitose/efeitos dos fármacos , Células HCT116 , Células HT29 , Humanos , Lipídeos/farmacologia , Nanopartículas/ultraestrutura , Compostos Organoplatínicos/farmacologia , Oxaliplatina , Fosfatidilinositol 3-Quinases/metabolismo , Fosfolipídeos/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
12.
Colloids Surf B Biointerfaces ; 135: 793-801, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26342325

RESUMO

In the present study, we developed a novel drug-like self-micellizing anticancer lipid (SMAL), and investigated its anticancer activity and effects on cell death pathways in human colorectal cancer (CRC) cell lines. Three self-assembled nanoparticles were prepared, namely, SMAL102 (lauramide derivative), SMAL104 (palmitamide derivative), and SMAL108 (stearamide derivative) by a thin-film hydration technique, and were characterized for physicochemical and biological parameters. SMAL102 were nanosized (160.23 ± 8.11 nm) with uniform spherical shape, while SMAL104 and SMAL108 did not form spherical shape but formed large size nanoparticles and irregular in shape. Importantly, SMAL102 showed a cytotoxic effect towards CRC cell lines (HCT116 and HT-29), and less toxicity to a normal colon fibroblast cell line (CCD-18Co). Conversely, SMAL104 and SMAL108 did not have an anti-proliferative effect on CRC cell lines. SMAL102 nanoparticles were actively taken up by CRC cell lines, localized in the cell membrane, and exhibited remarkable cytotoxicity in a concentration-dependent manner. The normal colon cell line showed significantly less cellular uptake and non-cytotoxicity as compared with the CRC cell lines. SMAL102 nanoparticles induced caspase-3, caspase-9, and PARP cleavage in HT-29 cells, indicating the induction of apoptosis; whereas LC3B was activated in HCT116 cells, indicating autophagy-induced cell death. Collectively, these results demonstrate that SMAL102 induced cell death via activation of apoptosis and autophagy in CRC cell lines. The present study could be a pioneer for further preclinical and clinical development of such compounds.


Assuntos
Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Neoplasias Colorretais/patologia , Lipídeos/química , Micelas , Nanopartículas , Células HCT116 , Células HT29 , Humanos
13.
PLoS One ; 10(1): e0116984, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25629974

RESUMO

Cancer cell motility is a key phenomenon regulating invasion and metastasis. Focal adhesion kinase (FAK) plays a major role in cellular adhesion and metastasis of various cancers. The relationship between dietary supplementation of calcium and colon cancer has been extensively investigated. However, the effect of calcium (Ca2+) supplementation on calpain-FAK-motility is not clearly understood. We sought to identify the mechanism of FAK cleavage through Ca2+ bound lactate (CaLa), its downstream signaling and role in the motility of human colon cancer cells. We found that treating HCT116 and HT-29 cells with CaLa immediately increased the intracellular Ca2+ (iCa2+) levels for a prolonged period of time. Ca2+ influx induced cleavage of FAK into an N-terminal FAK (FERM domain) in a dose-dependent manner. Phosphorylated FAK (p-FAK) was also cleaved in to its p-N-terminal FAK. CaLa increased colon cancer cells motility. Calpeptin, a calpain inhibitor, reversed the effects of CaLa on FAK and pFAK cleavage in both cancer cell lines. The cleaved FAK translocates into the nucleus and modulates p53 stability through MDM2-associated ubiquitination. CaLa-induced Ca2+ influx increased the motility of colon cancer cells was mediated by calpain activity through FAK and pFAK protein destabilization. In conclusion, these results suggest that careful consideration may be given in deciding dietary Ca2+ supplementation to patient undergoing treatment for metastatic cancer.


Assuntos
Compostos de Cálcio/farmacologia , Cálcio/metabolismo , Calpaína/metabolismo , Movimento Celular/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Lactatos/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Neoplasias do Colo/patologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Células HT29 , Humanos , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
14.
Arch Pharm Res ; 38(4): 534-42, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25085659

RESUMO

The objective of this study is to enhance skin permeation of finasteride and dutasteride for the treatment of androgenetic alopecia using surface-modified liquid crystalline nanoparticle (sm-LCN) dispersion. LCN entrapped with the drugs was prepared by using monoolein as a liquid crystal former, and surface modification was performed by treatment of the LCN dispersion with same volume of 1 % v/v acetic acid solution containing chitosan. Physicochemical properties of the LCN's were studied with regard to particle size, polydispersity index, zeta potential, and release of the drugs. Skin permeation of drugs entrapped into the LCN and sm-LCN was investigated with porcine abdominal skin using Franz diffusion cell. Cytotoxicity of the LCN's was also studied using human skin keratinocytes. The particle size and zeta potential of the LCN were 197.9 ± 2.5 nm and -20.2 ± 1.9 mV, respectively, and sm-LCN showed slightly bigger size and positive zeta potential due to the presence of thin coating on the surface of the nanoparticles. Compared to LCN, sm-LCN resulted in significantly enhanced skin permeation of the drugs whereas in vitro release was significantly reduced. Cell viability as a measure of cytotoxicity was above 80 % up to 20 µg/ml concentration of both LCN and sm-LCN. In conclusion, sm-LCN may provide a strategy to maximize therapeutic efficacy minimizing unwanted systemic side effects associated with the use of the drugs for the treatment of androgenetic alopecia.


Assuntos
Inibidores de 5-alfa Redutase/farmacocinética , Cristais Líquidos , Nanopartículas/metabolismo , Absorção Cutânea/fisiologia , Inibidores de 5-alfa Redutase/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Cristais Líquidos/química , Nanopartículas/química , Técnicas de Cultura de Órgãos , Absorção Cutânea/efeitos dos fármacos , Propriedades de Superfície , Suínos
15.
Int J Nanomedicine ; 9: 3119-30, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25061290

RESUMO

Despite the promising anticancer potential of curcumin, its therapeutic application has been limited, owing to its poor solubility, bioavailability, and chemical fragility. Therefore, various formulation approaches have been attempted to address these problems. In this study, we entrapped curcumin into monoolein (MO)-based liquid crystalline nanoparticles (LCNs) and evaluated the physicochemical properties and anticancer activity of the LCN dispersion. The results revealed that particles in the curcumin-loaded LCN dispersion were discrete and monodispersed, and that the entrapment efficiency was almost 100%. The stability of curcumin in the dispersion was surprisingly enhanced (about 75% of the curcumin survived after 45 days of storage at 40°C), and the in vitro release of curcumin was sustained (10% or less over 15 days). Fluorescence-activated cell sorting (FACS) analysis using a human colon cancer cell line (HCT116) exhibited 99.1% fluorescence gating for 5 µM curcumin-loaded LCN dispersion compared to 1.36% for the same concentration of the drug in dimethyl sulfoxide (DMSO), indicating markedly enhanced cellular uptake. Consistent with the enhanced cellular uptake of curcumin-loaded LCNs, anticancer activity and cell cycle studies demonstrated apoptosis induction when the cells were treated with the LCN dispersion; however, there was neither noticeable cell death nor significant changes in the cell cycle for the same concentration of the drug in DMSO. In conclusion, entrapping curcumin into MO-based LCNs may provide, in the future, a strategy for overcoming the hurdles associated with both the stability and cellular uptake issues of the drug in the treatment of various cancers.


Assuntos
Antineoplásicos/química , Curcumina/química , Glicerídeos/química , Nanopartículas/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Curcumina/farmacologia , Portadores de Fármacos/química , Estabilidade de Medicamentos , Células HCT116 , Humanos , Tamanho da Partícula , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA