Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biol Psychiatry ; 84(11): 817-826, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28780133

RESUMO

BACKGROUND: Disruptions in circadian rhythms are associated with an increased risk for bipolar disorder. Moreover, studies show that the circadian protein CLOCK (circadian locomotor output cycles kaput) is involved in regulating monoaminergic systems and mood-related behavior. However, the molecular and synaptic mechanisms underlying this relationship remain poorly understood. METHODS: Using ex vivo whole-cell patch-clamp electrophysiology in ClockΔ19 mutant and wild-type mice we characterized alterations in excitatory synaptic transmission, strength, and intrinsic excitability of nucleus accumbens (NAc) neurons. We performed protein crosslinking and Western blot analysis to examine surface and intracellular levels and rhythm of the glutamate receptor subunit, GluA1, in the NAc. Viral-mediated overexpression of Gria1 in the NAc and behavioral assays were also used. RESULTS: Compared with wild-type mice, ClockΔ19 mice display reduced alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor-mediated excitatory synaptic responses at NAc medium spiny neurons. These alterations are likely postsynaptic, as presynaptic release of glutamate onto medium spiny neurons is unaltered in mutant mice. Additionally, NAc surface protein levels and the rhythm of GRIA1 are decreased in ClockΔ19 mice diurnally, consistent with reduced functional synaptic response. Furthermore, we observed a significantly hyperpolarized resting membrane potential of ClockΔ19 medium spiny neurons, suggesting lowered intrinsic excitability. Last, overexpression of functional Gria1 in the NAc of mutant mice was able to normalize increased exploratory drive and reward sensitivity behavior when mice are in a manic-like state. CONCLUSIONS: Together, our findings demonstrate that NAc excitatory signaling via Gria1 expression is integral to the effects of Clock gene disruption on manic-like behaviors.


Assuntos
Transtorno Bipolar/genética , Transtorno Bipolar/patologia , Proteínas CLOCK/genética , Plasticidade Neuronal/fisiologia , Receptores de AMPA/metabolismo , Animais , Transtorno Bipolar/tratamento farmacológico , Ritmo Circadiano , Potenciais Pós-Sinápticos Excitadores , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal/genética , Neurônios/fisiologia , Núcleo Accumbens/fisiologia , Técnicas de Patch-Clamp , Transmissão Sináptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA