Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 236(2): 512-524, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35775827

RESUMO

The Arabidopsis Plant HomeoDomain (PHD) proteins AtMS1 and AtMMD1 provide chromatin-mediated transcriptional regulation essential for tapetum-dependent pollen formation. This pollen-based male gametogenesis is a derived trait of seed plants. Male gametogenesis in the common ancestors of land plants is instead likely to have been reminiscent of that in extant bryophytes where flagellated sperms are produced by an elaborate gametophyte generation. Still, also bryophytes possess MS1/MMD1-related PHD proteins. We addressed the function of two MS1/MMD1-homologues in the bryophyte model moss Physcomitrium patens by the generation and analysis of reporter and loss-of-function lines. The two genes are together essential for both male and female fertility by providing functions in the gamete-producing inner cells of antheridia and archegonia. They are furthermore expressed in the diploid sporophyte generation suggesting a function during sporogenesis, a process proposed related by descent to pollen formation in angiosperms. We propose that the moss MS1/MMD1-related regulatory network required for completion of male and female gametogenesis, and possibly for sporogenesis, represent a heritage from ancestral land plants.


Assuntos
Arabidopsis , Bryopsida , Arabidopsis/genética , Bryopsida/genética , Bryopsida/metabolismo , Cromatina/metabolismo , Miopatias Distais , Gametogênese , Regulação da Expressão Gênica de Plantas , Atrofia Muscular , Plantas/genética
2.
New Phytol ; 235(2): 718-731, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35037245

RESUMO

Clade II basic helix-loop-helix transcription factors (bHLH TFs) are essential for pollen production and tapetal nursing functions in angiosperm anthers. As pollen has been suggested to be related to bryophyte spores by descent, we characterized two Physcomitrium (Physcomitrella) patens clade II bHLH TFs (PpbHLH092 and PpbHLH098), to test if regulation of sporogenous cells and the nursing cells surrounding them is conserved between angiosperm anthers and bryophyte sporangia. We made CRISPR-Cas9 reporter and loss-of-function lines to address the function of PpbHLH092/098. We sectioned and analyzed WT and mutant sporophytes for a comprehensive stage-by-stage comparison of sporangium development. Spore precursors in the P. patens sporangium are surrounded by nursing cells showing striking similarities to tapetal cells in angiosperms. Moss clade II bHLH TFs are essential for the differentiation of these tapetal-like cells and for the production of functional spores. Clade II bHLH TFs provide a conserved role in controlling the sporophytic somatic cells surrounding and nursing the sporogenous cells in both moss sporangia and angiosperm anthers. This supports the hypothesis that such nursing functions in mosses and angiosperms, lineages separated by c. 450 million years, are related by descent.


Assuntos
Bryopsida , Magnoliopsida , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Bryopsida/metabolismo , Regulação da Expressão Gênica de Plantas , Haploidia , Magnoliopsida/genética , Magnoliopsida/metabolismo , Proteínas de Plantas/metabolismo , Esporângios/metabolismo , Esporos Fúngicos/metabolismo
3.
New Phytol ; 233(6): 2614-2628, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34942024

RESUMO

Although land plant germ cells have received much attention, knowledge about their specification is still limited. We thus identified transcripts enriched in egg cells of the bryophyte model species Physcomitrium patens, compared the results with angiosperm egg cells, and selected important candidate genes for functional analysis. We used laser-assisted microdissection to perform a cell-type-specific transcriptome analysis on egg cells for comparison with available expression profiles of vegetative tissues and male reproductive organs. We made reporter lines and knockout mutants of the two BONOBO (PbBNB) genes and studied their role in reproduction. We observed an overlap in gene activity between bryophyte and angiosperm egg cells, but also clear differences. Strikingly, several processes that are male-germline specific in Arabidopsis are active in the P. patens egg cell. Among those were the moss PbBNB genes, which control proliferation and identity of both female and male germlines. Pathways shared between male and female germlines were most likely present in the common ancestors of land plants, besides sex-specifying factors. A set of genes may also be involved in the switches between the diploid and haploid moss generations. Nonangiosperm gene networks also contribute to the specification of the P. patens egg cell.


Assuntos
Bryopsida , Células Germinativas Vegetais , Bryopsida/genética , Bryopsida/metabolismo , Epigênese Genética
4.
New Phytol ; 229(2): 845-860, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32901452

RESUMO

The plant hormone auxin is a key factor for regulation of plant development, and this function was probably reinforced during the evolution of early land plants. We have extended the available toolbox to allow detailed studies of how auxin biosynthesis and responses are regulated in moss reproductive organs, their stem cells and gametes to better elucidate the function of auxin in the morphogenesis of early land plants. We measured auxin metabolites and identified IPyA (indole-3-pyruvic acid) as the main biosynthesis pathway in Physcomitrium (Physcomitrella) patens and established knock-out, overexpressor and reporter lines for biosynthesis genes which were analyzed alongside previously reported auxin-sensing and transport reporters. Vegetative and reproductive apical stem cells synthesize auxin. Sustained stem cell activity depends on an inability to sense the auxin produced while progeny of the stem cells respond to the auxin, aiding in the control of cell division, expansion and differentiation. Gamete precursors are dependent on a certain degree of auxin sensing, while the final differentiation is a low auxin-sensing process. Tha data presented indicate that low auxin activity may represent a conserved hallmark of land plant gametes, and that local auxin biosynthesis in apical stem cells may be part of an ancestral mechanism to control focal growth.


Assuntos
Briófitas , Bryopsida , Bryopsida/genética , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Reguladores de Crescimento de Plantas , Células-Tronco
5.
New Phytol ; 224(2): 775-788, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31318450

RESUMO

Efforts to reveal ancestral functions of auxin, a key regulator of plant growth and development, and its importance for evolution have been hampered by a fragmented picture of auxin response domains in early-diverging land plants. We report the mapping of auxin sensing and responses during vegetative moss development using novel reporters. We established a moss-specific ratiometric reporter (PpR2D2) for Auxin Response Element- and AUXIN RESPONSE FACTOR-independent auxin sensing in Physcomitrella patens, and its readout during vegetative development was compared with new promoter-based GmGH3::GFPGUS and DR5revV2::GFPGUS auxin response reporters. The ratiometric reporter responds rapidly to auxin in a time-, dose- and TRANSPORT INHIBITOR RESISTANT1/AUXIN F-BOX-dependent manner and marks known, anticipated and novel auxin sensing domains. It reveals proximal auxin sensing maxima in filamentous tissues and sensing minima in all five vegetative gametophytic stem cell types as well as dividing cells. PpR2D2 readout is compliant with an ancestral function of auxin as a positive regulator of differentiation vs proliferation in stem cell regions. The PpR2D2 reporter is a sensitive tool for high-resolution mapping of auxin sensing, which can increase our knowledge of auxin function in early-diverging land plants substantially, thereby advancing our understanding of its importance for plant evolution.


Assuntos
Briófitas/metabolismo , Ácidos Indolacéticos/farmacologia , Proteínas de Plantas/metabolismo , Células-Tronco/fisiologia , Aminoácidos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/fisiologia , Genes Reporter , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética
6.
Front Plant Sci ; 9: 150, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29491878

RESUMO

In flowering plants, mature sperm cells are enclosed in pollen grains formed in structures called anthers. Several cell layers surrounding the central sporogenous cells of the anther are essential for directing the developmental processes that lead to meiosis, pollen formation, and the subsequent pollen release. The specification and function of these tissues are regulated by a large number of genetic factors. Additionally, the plant hormone auxin has previously been shown to play important roles in the later phases of anther development. Using the R2D2 auxin sensor system we here show that auxin is sensed also in the early phases of anther cell layer development, suggesting that spatiotemporal regulation of auxin levels is important for early anther morphogenesis. Members of the SHI/STY transcription factor family acting as direct regulators of YUC auxin biosynthesis genes have previously been demonstrated to affect early anther patterning. Using reporter constructs we show that SHI/STY genes are dynamically active throughout anther development and their expression overlaps with those of three additional downstream targets, PAO5, EOD3 and PGL1. Characterization of anthers carrying mutations in five SHI/STY genes clearly suggests that SHI/STY transcription factors affect anther organ identity. In addition, their activity is important to repress periclinal cell divisions as well as premature entrance into programmed cell death and cell wall lignification, which directly influences the timing of anther dehiscence and the pollen viability. The SHI/STY proteins also prevent premature pollen germination suggesting that they may play a role in the induction or maintenance of pollen dormancy.

7.
J Exp Bot ; 69(2): 277-290, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-28992074

RESUMO

The signalling molecule auxin regulates many fundamental aspects of growth and development in plants. We review and discuss what is known about auxin-regulated development in mosses, with special emphasis on the model species Physcomitrella patens. It is well established that mosses and other early diverging plants produce and respond to auxin. By sequencing the P. patens genome, it became clear that it encodes many core proteins important for auxin homeostasis, perception, and signalling, which have also been identified in flowering plants. This suggests that the auxin molecular network was present in the last common ancestor of flowering plants and mosses. Despite fundamental differences in their life cycles, key processes such as organ initiation and outgrowth, branching, tropic responses, as well as cell differentiation, division, and expansion appear to be regulated by auxin in the two lineages. This knowledge paves the way for studies aimed at a better understanding of the origin and evolution of auxin function and how auxin may have contributed to the evolution of land plants.


Assuntos
Bryopsida/fisiologia , Ácidos Indolacéticos , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas/fisiologia
8.
Front Plant Sci ; 8: 1735, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29067034

RESUMO

The plant hormone auxin is a vital component for plant reproduction as it regulates the development of both male and female reproductive organs, including ovules and gynoecia. Furthermore, auxin plays important roles in the development and growth of seeds and fruits. Auxin responses can be detected in ovules shortly after fertilization, and it has been suggested that this accumulation is a prerequisite for the developmental reprogramming of the ovules to seeds, and of the gynoecium to a fruit. However, the roles of auxin at the final stages of ovule development, and the sources of auxin leading to the observed responses in ovules after fertilization have remained elusive. Here we have characterized the auxin readout in Arabidopsis ovules, at the pre-anthesis, anthesis and in the immediate post-fertilization stages, using the R2D2 auxin sensor. In addition we have mapped the expression of auxin biosynthesis and conjugation genes, as well as that of auxin transporting proteins, during the same developmental stages. These analyses reveal specific spatiotemporal patterns of the different auxin homeostasis regulators. Auxin biosynthesis genes and auxin transport proteins define a pre-patterning of vascular cell identity in the pre-anthesis funiculus. Furthermore, our data suggests that auxin efflux from the ovule is restricted in an anther-dependent manner, presumably to synchronize reproductive organ development and thereby optimizing the chances of successful fertilization. Finally, de novo auxin biosynthesis together with reduced auxin conjugation and transport result in an enhanced auxin readout throughout the sporophytic tissues of the ovules soon after fertilization. Together, our results suggest a sophisticated set of regulatory cascades that allow successful fertilization and the subsequent transition of the female reproductive structures into seeds and fruits.

9.
Plant Physiol ; 175(3): 1144-1157, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28894023

RESUMO

The Arabidopsis (Arabidopsis thaliana) gynoecium consists of two congenitally fused carpels made up of two lateral valve domains and two medial domains, which retain meristematic properties and later fuse to produce the female reproductive structures vital for fertilization. Polar auxin transport (PAT) is important for setting up distinct apical auxin signaling domains in the early floral meristem remnants allowing for lateral domain identity and outgrowth. Crosstalk between auxin and cytokinin plays an important role in the development of other meristematic tissues, but hormone interaction studies to date have focused on more accessible later-stage gynoecia and the spatiotemporal interactions pivotal for patterning of early gynoecium primordia remain unknown. Focusing on the earliest stages, we propose a cytokinin-auxin feedback model during early gynoecium patterning and hormone homeostasis. Our results suggest that cytokinin positively regulates auxin signaling in the incipient gynoecial primordium and strengthen the concept that cytokinin regulates auxin homeostasis during gynoecium development. Specifically, medial cytokinin promotes auxin biosynthesis components [YUCCA1/4 (YUC1/4)] in, and PINFORMED7 (PIN7)-mediated auxin efflux from, the medial domain. The resulting laterally focused auxin signaling triggers ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN6 (AHP6), which then represses cytokinin signaling in a PAT-dependent feedback. Cytokinin also down-regulates PIN3, promoting auxin accumulation in the apex. The yuc1, yuc4, and ahp6 mutants are hypersensitive to exogenous cytokinin and 1-napthylphthalamic acid (NPA), highlighting their role in mediolateral gynoecium patterning. In summary, these mechanisms self-regulate cytokinin and auxin signaling domains, ensuring correct domain specification and gynoecium development.


Assuntos
Arabidopsis/embriologia , Arabidopsis/metabolismo , Padronização Corporal , Citocininas/metabolismo , Flores/embriologia , Ácidos Indolacéticos/metabolismo , Transdução de Sinais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Homeostase , Modelos Biológicos , Reguladores de Crescimento de Plantas/metabolismo , Regulação para Cima
10.
Autophagy ; 13(11): 1939-1951, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28837383

RESUMO

Autophagy, a major catabolic process in eukaryotes, was initially related to cell tolerance to nutrient depletion. In plants autophagy has also been widely related to tolerance to biotic and abiotic stresses (through the induction or repression of programmed cell death, PCD) as well as to promotion of developmentally regulated PCD, starch degradation or caloric restriction important for life span. Much less is known regarding its role in plant cell differentiation. Here we show that macroautophagy, the autophagy pathway driven by engulfment of cytoplasmic components by autophagosomes and its subsequent degradation in vacuoles, is highly active during germ cell differentiation in the early diverging land plant Physcomitrella patens. Our data provide evidence that suppression of ATG5-mediated autophagy results in reduced density of the egg cell-mediated mucilage that surrounds the mature egg, pointing toward a potential role of autophagy in extracellular mucilage formation. In addition, we found that ATG5- and ATG7-mediated autophagy is essential for the differentiation and cytoplasmic reduction of the flagellated motile sperm and hence for sperm fertility. The similarities between the need of macroautophagy for sperm differentiation in moss and mouse are striking, strongly pointing toward an ancestral function of autophagy not only as a protector against nutrient stress, but also in gamete differentiation.


Assuntos
Autofagia , Bryopsida/citologia , Diferenciação Celular , Células Germinativas Vegetais/citologia , Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína 7 Relacionada à Autofagia/metabolismo , Bryopsida/genética , Regulação da Expressão Gênica de Plantas , Mucilagem Vegetal/metabolismo , Estresse Fisiológico
11.
Plant Physiol ; 171(1): 42-61, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26983993

RESUMO

Plant meristems, like animal stem cell niches, maintain a pool of multipotent, undifferentiated cells that divide and differentiate to give rise to organs. In Arabidopsis (Arabidopsis thaliana), the carpel margin meristem is a vital meristematic structure that generates ovules from the medial domain of the gynoecium, the female floral reproductive structure. The molecular mechanisms that specify this meristematic region and regulate its organogenic potential are poorly understood. Here, we present a novel approach to analyze the transcriptional signature of the medial domain of the Arabidopsis gynoecium, highlighting the developmental stages that immediately proceed ovule initiation, the earliest stages of seed development. Using a floral synchronization system and a SHATTERPROOF2 (SHP2) domain-specific reporter, paired with FACS and RNA sequencing, we assayed the transcriptome of the gynoecial medial domain with temporal and spatial precision. This analysis reveals a set of genes that are differentially expressed within the SHP2 expression domain, including genes that have been shown previously to function during the development of medial domain-derived structures, including the ovules, thus validating our approach. Global analyses of the transcriptomic data set indicate a similarity of the pSHP2-expressing cell population to previously characterized meristematic domains, further supporting the meristematic nature of this gynoecial tissue. Our method identifies additional genes including novel isoforms, cis-natural antisense transcripts, and a previously unrecognized member of the REPRODUCTIVE MERISTEM family of transcriptional regulators that are potential novel regulators of medial domain development. This data set provides genome-wide transcriptional insight into the development of the carpel margin meristem in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Meristema/genética , Transcriptoma , Arabidopsis/anatomia & histologia , Proteínas de Arabidopsis/isolamento & purificação , Sequência de Bases , Hidrato de Cloral , DNA Antissenso , Flores/genética , Genoma de Planta , Hibridização In Situ , Ácidos Indolacéticos/farmacologia , Proteínas de Domínio MADS/isolamento & purificação , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Microscopia Confocal , Óvulo Vegetal/citologia , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/metabolismo , Isoformas de Proteínas , Protoplastos , RNA de Plantas/química , RNA de Plantas/isolamento & purificação , Sementes/crescimento & desenvolvimento , Alinhamento de Sequência , Fatores de Transcrição , Ativação Transcricional
12.
Curr Biol ; 24(23): 2786-91, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25448004

RESUMO

The emergence and radiation of multicellular land plants was driven by crucial innovations to their body plans. The directional transport of the phytohormone auxin represents a key, plant-specific mechanism for polarization and patterning in complex seed plants. Here, we show that already in the early diverging land plant lineage, as exemplified by the moss Physcomitrella patens, auxin transport by PIN transporters is operational and diversified into ER-localized and plasma membrane-localized PIN proteins. Gain-of-function and loss-of-function analyses revealed that PIN-dependent intercellular auxin transport in Physcomitrella mediates crucial developmental transitions in tip-growing filaments and waves of polarization and differentiation in leaf-like structures. Plasma membrane PIN proteins localize in a polar manner to the tips of moss filaments, revealing an unexpected relation between polarization mechanisms in moss tip-growing cells and multicellular tissues of seed plants. Our results trace the origins of polarization and auxin-mediated patterning mechanisms and highlight the crucial role of polarized auxin transport during the evolution of multicellular land plants.

13.
Plant Physiol ; 166(4): 1998-2012, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25332506

RESUMO

Although it is generally accepted that auxin is important for the patterning of the female reproductive organ, the gynoecium, the flow as well as the temporal and spatial actions of auxin have been difficult to show during early gynoecial development. The primordium of the Arabidopsis (Arabidopsis thaliana) gynoecium is composed of two congenitally fused, laterally positioned carpel primordia bisected by two medially positioned meristematic regions that give rise to apical and internal tissues, including the ovules. This organization makes the gynoecium one of the most complex plant structures, and as such, the regulation of its development has remained largely elusive. By determining the spatiotemporal expression of auxin response reporters and localization of PINFORMED (PIN) auxin efflux carriers, we have been able to create a map of the auxin flow during the earliest stages of gynoecial primordium initiation and outgrowth. We show that transient disruption of polar auxin transport (PAT) results in ectopic auxin responses, broadened expression domains of medial tissue markers, and disturbed lateral preprocambium initiation. Based on these results, we propose a new model of auxin-mediated gynoecial patterning, suggesting that valve outgrowth depends on PIN1-mediated lateral auxin maxima as well as subsequent internal auxin drainage and provascular formation, whereas the growth of the medial domains is less dependent on correct PAT. In addition, PAT is required to prevent the lateral domains, at least in the apical portion of the gynoecial primordium, from obtaining medial fates.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/embriologia , Proteínas de Arabidopsis/genética , Transporte Biológico , Proteínas de Membrana Transportadoras/genética , Reprodução
14.
Plant Physiol ; 162(3): 1406-19, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23669745

RESUMO

In order to establish a reference for analysis of the function of auxin and the auxin biosynthesis regulators SHORT INTERNODE/STYLISH (SHI/STY) during Physcomitrella patens reproductive development, we have described male (antheridial) and female(archegonial) development in detail, including temporal and positional information of organ initiation. This has allowed us to define discrete stages of organ morphogenesis and to show that reproductive organ development in P. patens is highly organized and that organ phyllotaxis differs between vegetative and reproductive development. Using the PpSHI1 and PpSHI2 reporter and knockout lines, the auxin reporters GmGH3(pro):GUS and PpPINA(pro):GFP-GUS, and the auxin-conjugating transgene PpSHI2(pro):IAAL, we could show that the PpSHI genes, and by inference also auxin, play important roles for reproductive organ development in moss. The PpSHI genes are required for the apical opening of the reproductive organs, the final differentiation of the egg cell, and the progression of canal cells into a cell death program. The apical cells of the archegonium, the canal cells, and the egg cell are also sites of auxin responsiveness and are affected by reduced levels of active auxin, suggesting that auxin mediates PpSHI function in the reproductive organs.


Assuntos
Bryopsida/crescimento & desenvolvimento , Bryopsida/genética , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Flores/genética , Técnicas de Inativação de Genes , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/genética , Plantas Geneticamente Modificadas
15.
J Exp Bot ; 64(9): 2619-27, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23585670

RESUMO

Recent research is beginning to reveal how intricate networks of hormones and transcription factors coordinate the complex patterning of the gynoecium, the female reproductive structure of flowering plants. This review summarizes recent advances in understanding of how auxin biosynthesis, transport, and responses together generate specific gynoecial domains. This review also highlights areas where future research endeavours are likely to provide additional insight into the homeostatic molecular mechanisms by which auxin regulates gynoecium development.


Assuntos
Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Flores/crescimento & desenvolvimento , Flores/metabolismo , Homeostase
16.
Aging Cell ; 12(2): 327-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23331488

RESUMO

Caloric restriction (CR) extends lifespan in various heterotrophic organisms ranging from yeasts to mammals, but whether a similar phenomenon occurs in plants remains unknown. Plants are autotrophs and use their photosynthetic machinery to convert light energy into the chemical energy of glucose and other organic compounds. As the rate of photosynthesis is proportional to the level of photosynthetically active radiation, the CR in plants can be modeled by lowering light intensity. Here, we report that low light intensity extends the lifespan in Arabidopsis through the mechanisms triggering autophagy, the major catabolic process that recycles damaged and potentially harmful cellular material. Knockout of autophagy-related genes results in the short lifespan and suppression of the lifespan-extending effect of the CR. Our data demonstrate that the autophagy-dependent mechanism of CR-induced lifespan extension is conserved between autotrophs and heterotrophs.


Assuntos
Arabidopsis/genética , Autofagia/genética , Plantas Geneticamente Modificadas , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Autofagia/efeitos da radiação , Proteína 5 Relacionada à Autofagia , Restrição Calórica , Glucose/metabolismo , Luz , Longevidade/genética , Longevidade/efeitos da radiação , Monoéster Fosfórico Hidrolases/deficiência , Monoéster Fosfórico Hidrolases/genética , Fotossíntese/fisiologia
17.
New Phytol ; 197(3): 737-750, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23293954

RESUMO

Leaves depend on highly developed venation systems to collect fixed carbon for transport and to distribute water. We hypothesized that local regulation of auxin biosynthesis plays a role in vein development. To this effect, we assessed the role of the SHORT INTERNODES/STYLISH (SHI/STY) gene family, zinc-finger transcription factors linked to regulation of auxin biosynthesis, in Arabidopsis thaliana leaf vein development. Gene functions were assessed by a combination of high-resolution spatio-temporal expression analysis of promoter-marker lines and phenotypic analysis of plants homozygous for single and multiple mutant combinations. The SHI/STY genes showed expression patterns with variations on a common theme of activity in incipient and developing cotyledon and leaf primordia, narrowing to apices and hydathode regions. Mutant analysis of single to quintuple mutant combinations revealed dose-dependent defects in vein patterning affecting multiple vein traits, most notably in cotyledons. Here we demonstrate that local regulation of auxin biosynthesis is an important aspect of leaf vein development. Our findings also support a model in which auxin synthesized at the periphery of primordia affects vein development.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Transporte/fisiologia , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Fatores de Transcrição/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica , Ácidos Indolacéticos/farmacologia , Mutagênese Sítio-Dirigida , Folhas de Planta/genética , Folhas de Planta/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco
18.
Plant Mol Biol ; 78(6): 545-59, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22318676

RESUMO

SHORT-INTERNODES/STYLISH (SHI/STY)-family proteins redundantly regulate development of lateral organs in Arabidopsis thaliana. We have previously shown that STY1 interacts with the promoter of the auxin biosynthesis gene YUCCA (YUC)4 and activates transcription of the genes YUC4, YUC8 and OCTADECANOID-RESPONSIVE ARABIDOPSIS AP2/ERF (ORA)59 independently of protein translation. STY1 also affects auxin levels and auxin biosynthesis rates. Here we show that STY1 induces the transcription of 16 additional genes independently of protein translation. Several of these genes are tightly co-expressed with SHI/STY-family genes and/or down-regulated in SHI/STY-family multiple mutant lines, suggesting them to be regulated by SHI/STY proteins during plant development. The majority of the identified genes encode transcription factors or cell expansion-related enzymes and functional studies suggest their involvement in stamen and leaf development or flowering time regulation.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Transporte/fisiologia , Genes de Plantas , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Sequência de Bases , Proteínas de Transporte/genética , Proliferação de Células , DNA de Plantas/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Ácidos Indolacéticos/metabolismo , Mutação , Oxigenases/genética , Oxigenases/fisiologia , Plantas Geneticamente Modificadas , Transativadores/genética , Transativadores/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
19.
Plant Physiol ; 157(4): 2069-80, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21976484

RESUMO

Auxin/indole-3-acetic acid (IAA) biosynthesis in Arabidopsis (Arabidopsis thaliana) plays a major role in growth responses to developmental and genetic signals as well as to environmental stimuli. Knowledge of its regulation, however, remains rudimentary, and few proteins acting as transcriptional modulators of auxin biosynthesis have been identified. We have previously shown that alteration in the expression level of the SHORT INTERNODES/STYLISH (SHI/STY) family member STY1 affects IAA biosynthesis rates and IAA levels and that STY1 acts as a transcriptional activator of genes encoding auxin biosynthesis enzymes. Here, we have analyzed the upstream regulation of SHI/STY family members to gain further insight into transcriptional regulation of auxin biosynthesis. We attempted to modulate the normal expression pattern of STY1 by mutating a putative regulatory element, a GCC box, located in the proximal promoter region and conserved in most SHI/STY genes in Arabidopsis. Mutations in the GCC box abolish expression in aerial organs of the adult plant. We also show that induction of the transcriptional activator DORNRÖSCHEN-LIKE (DRNL) activates the transcription of STY1 and other SHI/STY family members and that this activation is dependent on a functional GCC box. Additionally, STY1 expression in the strong drnl-2 mutant or the drn drnl-1 puchi-1 triple mutant, carrying knockdown mutations in both DRNL and its close paralogue DRN as well as one of their closest homologs, PUCHI, was significantly reduced, suggesting that DRNL regulates STY1 during normal plant development and that several other genes might have redundant functions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Ácidos Indolacéticos/metabolismo , Motivos de Nucleotídeos/genética , Reguladores de Crescimento de Plantas/metabolismo , Aminoácidos Cíclicos/farmacologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Sequência de Bases , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cotilédone/genética , Cotilédone/crescimento & desenvolvimento , Cotilédone/fisiologia , Mutação , Componentes Aéreos da Planta/genética , Componentes Aéreos da Planta/crescimento & desenvolvimento , Componentes Aéreos da Planta/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
20.
Mol Plant ; 4(1): 97-115, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20924027

RESUMO

High-temperature stress, like any abiotic stress, impairs the physiology and development of plants, including the stages of seed setting and ripening. We used the Affymetrix 22K Barley1 GeneChip microarray to investigate the response of developing barley (Hordeum vulgare) seeds, termed caryopses, after 0.5, 3, and 6 h of heat stress exposure; 958 induced and 1122 repressed genes exhibited spatial and temporal expression patterns that provide a detailed insight into the caryopses' early heat stress responses. Down-regulation of genes related to storage compound biosynthesis and cell growth provides evidence for a rapid impairment of the caryopsis' development. Increased levels of sugars and amino acids were indicative for both production of compatible solutes and feedback-induced accumulation of substrates for storage compound biosynthesis. Metadata analysis identified embryo and endosperm as primary locations of heat stress responses, indicating a strong impact of short-term heat stress on central developmental functions of the caryopsis. A comparison with heat stress responses in Arabidopsis shoots and drought stress responses in barley caryopses identified both conserved and presumably heat- and caryopsis-specific stress-responsive genes. Summarized, our data provide an important basis for further investigation of gene functions in order to aid an improved heat tolerance and reduced losses of yield in barley as a model for cereal crops.


Assuntos
Perfilação da Expressão Gênica , Hordeum/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Aminoácidos/biossíntese , Carboidratos/biossíntese , Regulação da Expressão Gênica de Plantas , Hordeum/crescimento & desenvolvimento , Hordeum/fisiologia , Temperatura Alta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA