Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Breast Cancer Res Treat ; 181(1): 107-113, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32240455

RESUMO

PURPOSE: Epidemiological studies and randomized clinical trials suggest that the antidiabetic drug, metformin, may have anti-neoplastic effects. The mechanism that mediates these beneficial effects has been suggested to involve direct action on cancer cells, but this will require distribution of metformin in tumor tissue. The present study was designed to investigate metformin distribution in vivo in breast and liver tissue in breast cancer patients. METHODS: Seven patients recently diagnosed with ductal carcinoma were recruited. Using PET/CT, tissue distribution of metformin was determined in vivo for 90 min after injection of a carbon-11-labeled metformin tracer. After surgery, tumor tissue was investigated for gene expression levels of metformin transporter proteins. RESULTS: Tumor tissue displayed a distinct uptake of metformin compared to normal breast tissue AUC0-90 min (75.4 ± 5.5 vs 42.3 ± 6.3) g/ml*min (p = 0.01). Maximal concentration in tumor was at 1 min where it reached approximately 30% of the activity in the liver. The metformin transporter protein with the highest gene expression in tumor tissue was multidrug and toxin extrusion 1 (MATE 1) followed by plasma membrane monoamine transporter (PMAT). CONCLUSION: This study confirms that metformin is transported into tumor tissue in women with breast cancer. This finding support that metformin may have direct anti-neoplastic effects on tumor cells in breast cancer patients. However, distribution of metformin in tumor tissue is markedly lower than in liver, an established metformin target tissue.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/metabolismo , Radioisótopos de Carbono/farmacocinética , Hipoglicemiantes/farmacocinética , Metformina/farmacocinética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Idoso , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Seguimentos , Perfilação da Expressão Gênica , Humanos , Hipoglicemiantes/administração & dosagem , Metformina/administração & dosagem , Pessoa de Meia-Idade , Prognóstico , Distribuição Tecidual
2.
Br J Clin Pharmacol ; 85(8): 1761-1770, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30973968

RESUMO

AIMS: Metformin is first-line treatment of type 2 diabetes mellitus and reduces cardiovascular events in patients with insulin resistance and type 2 diabetes. Target tissue for metformin action is thought to be the liver, where metformin distribution depends on facilitated transport by polyspecific transmembrane organic cation transporters (OCTs). Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the western world with strong associations to insulin resistance and the metabolic syndrome, but whether NAFLD affects metformin biodistribution to the liver is not known. In this study, the primary aim was to investigate in vivo hepatic uptake of metformin dynamically in humans with variable degrees of liver affection. As a secondary aim, we wished to correlate hepatic metformin distribution with OCT gene transcription determined in diagnostic liver biopsies. METHODS: Eighteen patients with biopsy-proven NAFLD were investigated using 11C-metformin PET/CT technique. Gene transcripts of OCTs were determined by real-time polymerase chain reaction (PCR). RESULTS: We observed similar hepatic volume of distribution of metformin between patients with simple steatosis and non-alcoholic steatohepatitis (NASH) (Vd 2.38 ± 0.56 vs. 2.10 ± 0.39, P = 0.3). There was no association between hepatic exposure to metformin and the degree of inflammation or fibrosis, and no clear correlation between metformin distribution and OCT gene transcription. CONCLUSION: Metformin is distributed to the liver in patients with NAFLD and the distribution is not impaired by inflammation or fibrosis. The findings imply that metformin action in liver in patients with NAFLD may be preserved.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacocinética , Fígado/metabolismo , Metformina/farmacocinética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Adulto , Idoso , Biópsia , Radioisótopos de Carbono , Diabetes Mellitus Tipo 2/etiologia , Feminino , Perfilação da Expressão Gênica , Humanos , Hipoglicemiantes/administração & dosagem , Fígado/patologia , Masculino , Metformina/administração & dosagem , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/patologia , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Distribuição Tecidual
3.
Mol Cell Endocrinol ; 443: 15-22, 2017 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-28034777

RESUMO

Brown adipose tissue (BAT) is activated by extracellular norepinephrine (NE) released by the sympathetic nervous system. The extracellular concentration of NE is additionally regulated by the disappearance/degradation of NE. Recent studies have introduced the organic cation transporter 3 (OCT3) as a possible contributor in the regulation of NE in adipose tissue. In the present study we set out to investigate the presence of OCT3 in human neck adipose tissue (AT), which is the primary localization of BAT in humans. Moreover, we wanted to assess the possible function and correlation of the transporter with known markers of thermogenic function, e.g. UCP1. When examining neck AT biopsies from 57 individuals we found that OCT3 was expressed at 2.5 ± 0.16 fold higher level in the deep-neck AT compared with subcutaneous AT. UCP1 was found extensively expressed in the deep-neck AT depot and the correlation between UCP1 and OCT3 within the deep-neck AT was found highly significant (r2 = 0.4012, P-value < 0.0001). Lastly, we were able to reduce NE uptake in isolated brown adipocytes in an in vitro culture by adding corticosterone which is a known OCT3-blocker. In conclusion, we found that OCT3 may be a regulator of the concentration of NE in AT and by this mechanism a possible regulator of BAT function and a potential target for pharmacological intervention.


Assuntos
Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Neurônios/metabolismo , Norepinefrina/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores/metabolismo , Biópsia , Índice de Massa Corporal , Separação Celular , Estudos de Coortes , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Pescoço , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Ratos , Termogênese/genética , Proteína Desacopladora 1/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA