Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RNA Biol ; 19(1): 313-332, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35188077

RESUMO

RNA-based therapeutics are emerging as a powerful platform for the treatment of multiple diseases. Currently, the two main categories of nucleic acid therapeutics, antisense oligonucleotides and small interfering RNAs (siRNAs), achieve their therapeutic effect through either gene silencing, splicing modulation or microRNA binding, giving rise to versatile options to target pathogenic gene expression patterns. Moreover, ongoing research seeks to expand the scope of RNA-based drugs to include more complex nucleic acid templates, such as messenger RNA, as exemplified by the first approved mRNA-based vaccine in 2020. The increasing number of approved sequences and ongoing clinical trials has attracted considerable interest in the chemical development of oligonucleotides and nucleic acids as drugs, especially since the FDA approval of the first siRNA drug in 2018. As a result, a variety of innovative approaches is emerging, highlighting the potential of RNA as one of the most prominent therapeutic tools in the drug design and development pipeline. This review seeks to provide a comprehensive summary of current efforts in academia and industry aimed at fully realizing the potential of RNA-based therapeutics. Towards this, we introduce established and emerging RNA-based technologies, with a focus on their potential as biosensors and therapeutics. We then describe their mechanisms of action and their application in different disease contexts, along with the strengths and limitations of each strategy. Since the nucleic acid toolbox is rapidly expanding, we also introduce RNA minimal architectures, RNA/protein cleavers and viral RNA as promising modalities for new therapeutics and discuss future directions for the field.


Assuntos
Terapia Genética , RNA/genética , RNA/uso terapêutico , Pesquisa , Animais , Biotecnologia , Técnicas de Transferência de Genes , Terapia Genética/métodos , Terapia Genética/tendências , Humanos , Nanotecnologia , Oligonucleotídeos Antissenso , RNA/química , RNA Mensageiro , RNA Interferente Pequeno , Pesquisa/tendências
2.
J Am Chem Soc ; 143(9): 3416-3429, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33626278

RESUMO

The extra hepatic delivery of antisense oligonucleotides (ASOs) remains a challenge and hampers the widespread application of this powerful class of therapeutic agents. In that regard, pancreatic beta cells are a particularly attractive but challenging cell type because of their pivotal role in diabetes and the fact that they are refractory to uptake of unconjugated ASOs. To circumvent this, we have expanded our understanding of the structure activity relationship of ASOs conjugated to Glucagon Like Peptide 1 Receptor (GLP1R) agonist peptide ligands. We demonstrate the key role of the linker chemistry and its optimization to design maleimide based conjugates with improved in vivo efficacy. In addition, truncation studies and scoping of a diverse set of GLP1R agonists proved fruitful to identify additional targeting ligands efficacious in vivo including native hGLP1(7-36)NH2. Variation of the carrier peptide also shed some light on the dramatic impact of subtle sequence differences on the corresponding ASO conjugate performance in vivo, an area which clearly warrant further investigations. We have confirmed the remarkable potential of GLP1R agonist conjugation for the delivery of ASOs to pancreatic beta cell by effectively knocking down islet amyloid polypeptide (IAPP) mRNA, a potential proapoptotic target, in mice.


Assuntos
Portadores de Fármacos/química , Receptor do Peptídeo Semelhante ao Glucagon 1/química , Células Secretoras de Insulina/efeitos dos fármacos , Oligonucleotídeos Antissenso/farmacologia , Peptídeos/química , Sequência de Aminoácidos , Animais , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Células HEK293 , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Camundongos Endogâmicos C57BL , Estrutura Molecular , RNA Mensageiro/metabolismo , Relação Estrutura-Atividade
3.
Commun Biol ; 3(1): 782, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33335291

RESUMO

Protease-activated receptor-2 (PAR2) has been implicated in multiple pathophysiologies but drug discovery is challenging due to low small molecule tractability and a complex activation mechanism. Here we report the pharmacological profiling of a potent new agonist, suggested by molecular modelling to bind in the putative orthosteric site, and two novel PAR2 antagonists with distinctly different mechanisms of inhibition. We identify coupling between different PAR2 binding sites. One antagonist is a competitive inhibitor that binds to the orthosteric site, while a second antagonist is a negative allosteric modulator that binds at a remote site. The allosteric modulator shows probe dependence, more effectively inhibiting peptide than protease activation of PAR2 signalling. Importantly, both antagonists are active in vivo, inhibiting PAR2 agonist-induced acute paw inflammation in rats and preventing activation of mast cells and neutrophils. These results highlight two distinct mechanisms of inhibition that potentially could be targeted for future development of drugs that modulate PAR2.


Assuntos
Regulação Alostérica , Sítio Alostérico , Ligantes , Receptor PAR-2/química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Sítios de Ligação , Relação Dose-Resposta a Droga , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Receptor PAR-2/antagonistas & inibidores , Receptor PAR-2/metabolismo , Transdução de Sinais
4.
Bioorg Med Chem Lett ; 30(13): 127208, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32354568

RESUMO

Proinsulin C-peptide has previously been proposed to interact with a G-protein coupled receptor (GPCR), specifically the orphan receptor GPR146. To investigate the potential of C-peptide in treating complications of diabetes, such as kidney damage, it is necessary to understand its mode of action. We used CHO-K1 cells expressing human GPR146 to study human and murine C-peptide in dynamic mass redistribution and GPCR ß-arrestin assays, as well as with fluorescence confocal microscopy. Neither assay revealed any significant intracellular response to C-peptide at concentrations of up to 33 µM. We observed no internalisation of C-peptide by fluorescence microscopy. Our results do not support GPR146 as the receptor for C-peptide, but suggest that further investigations of the mode of action of C-peptide should be undertaken.


Assuntos
Peptídeo C/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Células CHO , Cricetulus , Células HEK293 , Humanos , Camundongos , Ligação Proteica
5.
SLAS Discov ; 23(5): 429-436, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29316408

RESUMO

The discovery of ligands via affinity-mediated selection of DNA-encoded chemical libraries is driven by the quality and concentration of the protein target. G-protein-coupled receptors (GPCRs) and other membrane-bound targets can be difficult to isolate in their functional state and at high concentrations, and therefore have been challenging for affinity-mediated selection. Here, we report a successful selection campaign against protease-activated receptor 2 (PAR2). Using a thermo-stabilized mutant of PAR2, we conducted affinity selection using our >100-billion-compound DNA-encoded library. We observed a number of putative ligands enriched upon selection, and subsequent cellular profiling revealed these ligands to comprise both agonists and antagonists. The agonist series shared structural similarity with known agonists. The antagonists were shown to bind in a novel allosteric binding site on the PAR2 protein. This report serves to demonstrate that cell-free affinity selection against GPCRs can be achieved with mutant stabilized protein targets.


Assuntos
DNA/genética , Mutação/efeitos dos fármacos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Sítio Alostérico/efeitos dos fármacos , Linhagem Celular , Células HEK293 , Humanos , Ligantes , Proteínas/genética , Receptor PAR-2 , Receptores Acoplados a Proteínas G/genética
6.
ACS Pharmacol Transl Sci ; 1(2): 119-133, 2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-32219208

RESUMO

Protease-activated receptor 2 (PAR2) is a G-protein-coupled receptor that is activated by proteolytic cleavage of its N-terminus. The unmasked N-terminal peptide then binds to the transmembrane bundle, leading to activation of intracellular signaling pathways associated with inflammation and cancer. Recently determined crystal structures have revealed binding sites of PAR2 antagonists, but the binding mode of the peptide agonist remains unknown. In order to generate a model of PAR2 in complex with peptide SLIGKV, corresponding to the trypsin-exposed tethered ligand, the orthosteric binding site was probed by iterative combinations of receptor mutagenesis, agonist ligand modifications, and data-driven structural modeling. Flexible-receptor docking identified a conserved binding mode for agonists related to the endogenous ligand that was consistent with the experimental data and allowed synthesis of a novel peptide (1-benzyl-1H[1,2,3]triazole-4-yl-LIGKV) with functional potency higher than that of SLIGKV. The final model may be used to understand the structural basis of PAR2 activation and in virtual screens to identify novel agonists and competitive antagonists. The combined experimental and computational approach to characterize agonist binding to PAR2 can be extended to study the many other G protein-coupled receptors that recognize peptides or proteins.

7.
PLoS One ; 12(12): e0189060, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29206860

RESUMO

The mechanism behind the glucose lowering effect occurring after specific activation of GPR120 is not completely understood. In this study, a potent and selective GPR120 agonist was developed and its pharmacological properties were compared with the previously described GPR120 agonist Metabolex-36. Effects of both compounds on signaling pathways and GLP-1 secretion were investigated in vitro. The acute glucose lowering effect was studied in lean wild-type and GPR120 null mice following oral or intravenous glucose tolerance tests. In vitro, in GPR120 overexpressing cells, both agonists signaled through Gαq, Gαs and the ß-arrestin pathway. However, in mouse islets the signaling pathway was different since the agonists reduced cAMP production. The GPR120 agonists stimulated GLP-1 secretion both in vitro in STC-1 cells and in vivo following oral administration. In vivo GPR120 activation induced significant glucose lowering and increased insulin secretion after intravenous glucose administration in lean mice, while the agonists had no effect in GPR120 null mice. Exendin 9-39, a GLP-1 receptor antagonist, abolished the GPR120 induced effects on glucose and insulin following an intravenous glucose challenge. In conclusion, GLP-1 secretion is an important mechanism behind the acute glucose lowering effect following specific GPR120 activation.


Assuntos
Glicemia/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Animais , Células CHO , Linhagem Celular , Cricetulus , AMP Cíclico/biossíntese , Feminino , Proteínas de Ligação ao GTP/metabolismo , Teste de Tolerância a Glucose , Humanos , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , beta-Arrestinas/metabolismo
8.
Nature ; 545(7652): 112-115, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28445455

RESUMO

Protease-activated receptors (PARs) are a family of G-protein-coupled receptors (GPCRs) that are irreversibly activated by proteolytic cleavage of the N terminus, which unmasks a tethered peptide ligand that binds and activates the transmembrane receptor domain, eliciting a cellular cascade in response to inflammatory signals and other stimuli. PARs are implicated in a wide range of diseases, such as cancer and inflammation. PARs have been the subject of major pharmaceutical research efforts but the discovery of small-molecule antagonists that effectively bind them has proved challenging. The only marketed drug targeting a PAR is vorapaxar, a selective antagonist of PAR1 used to prevent thrombosis. The structure of PAR1 in complex with vorapaxar has been reported previously. Despite sequence homology across the PAR isoforms, discovery of PAR2 antagonists has been less successful, although GB88 has been described as a weak antagonist. Here we report crystal structures of PAR2 in complex with two distinct antagonists and a blocking antibody. The antagonist AZ8838 binds in a fully occluded pocket near the extracellular surface. Functional and binding studies reveal that AZ8838 exhibits slow binding kinetics, which is an attractive feature for a PAR2 antagonist competing against a tethered ligand. Antagonist AZ3451 binds to a remote allosteric site outside the helical bundle. We propose that antagonist binding prevents structural rearrangements required for receptor activation and signalling. We also show that a blocking antibody antigen-binding fragment binds to the extracellular surface of PAR2, preventing access of the tethered ligand to the peptide-binding site. These structures provide a basis for the development of selective PAR2 antagonists for a range of therapeutic uses.


Assuntos
Receptor PAR-2/química , Receptor PAR-2/metabolismo , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico/efeitos dos fármacos , Anticorpos Bloqueadores/química , Anticorpos Bloqueadores/farmacologia , Benzimidazóis/química , Benzimidazóis/farmacologia , Benzodioxóis/química , Benzodioxóis/farmacologia , Álcoois Benzílicos/química , Álcoois Benzílicos/farmacologia , Cristalografia por Raios X , Humanos , Imidazóis/química , Imidazóis/farmacologia , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/farmacologia , Cinética , Ligantes , Modelos Moleculares , Receptor PAR-2/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
9.
FEBS Lett ; 587(15): 2399-404, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23770096

RESUMO

Succinate has been reported as the endogenous ligand for GPR91. In this study, succinate was confirmed to activate GPR91 resulting in both 3'-5'-cyclic adenosine monophosphate (cAMP) inhibition and inositol phosphate formation in a pertussis toxin (PTX)-sensitive manner. GPR91 agonist-mediated effects detected using dynamic mass redistribution (DMR) were inhibited with PTX, edelfosine and U73122 demonstrating the importance of not only the Gαi pathway but also PLCß. These results show that GPR91 when expressed in HEK293s cells couples exclusively through the Gαi pathway and acts through Gαi not only to inhibit cAMP production but also to increase intracellular Ca(2+) in an inositol phosphate dependent mechanism via PLCß activation.


Assuntos
Cálcio/metabolismo , Fosfolipase C beta/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Succinatos/metabolismo , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Transdução de Sinais
10.
Appl Biochem Biotechnol ; 161(1-8): 106-15, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19847383

RESUMO

Saccharomyces cerevisiae was exposed to inhibitory concentrations of the three phenolic phenylpropanoids: coniferyl aldehyde, ferulic acid, and isoeugenol. Deoxyribonucleic acid microarray analysis was employed as one approach to generate a set of candidate genes for deletion mutant analysis to determine the potential contribution of the corresponding gene products to the resistance against toxic concentrations of phenolic fermentation inhibitors. Three S. cerevisiae deletion mutants with increased sensitivity to coniferyl aldehyde were identified: yap1Delta, atr1Delta, and flr1Delta. The rate of reduction of coniferyl aldehyde to coniferyl alcohol decreased sixfold when the gene encoding the transcriptional activator Yap1p was deleted, and threefold when the Yap1p-controlled genes encoding Atr1p and Flr1p were deleted. Growth, glucose consumption, and ethanol formation progressed after a lag phase during which coniferyl aldehyde reduction and coniferyl alcohol formation occurred. The results link ATR1, FLR1, and YAP1 by their ability to confer resistance to coniferyl aldehyde and show that deletion of any of these three genes impairs the ability of S. cerevisiae to withstand coniferyl aldehyde and detoxify it by reduction. Furthermore, the results suggest that overexpression of ATR1, FLR1, and YAP1 is of interest for the construction of novel yeast strains with improved resistance against inhibitors in lignocellulose hydrolysates.


Assuntos
Fermentação , Fenóis/farmacologia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Acroleína/análogos & derivados , Aldeídos/farmacologia , Ácidos Cumáricos/farmacologia , Eugenol/análogos & derivados , Eugenol/farmacologia , Fermentação/genética , Sequestradores de Radicais Livres/farmacologia , Perfilação da Expressão Gênica , Análise em Microsséries , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA