Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 6(11)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37726137

RESUMO

The primary cilium undergoes cell cycle-dependent assembly and disassembly. Dysregulated ciliary dynamics are associated with several pathological conditions called ciliopathies. Previous studies showed that the localization of phosphorylated Tctex-1 at Thr94 (T94) at the ciliary base critically regulates ciliary resorption by accelerating actin remodeling and ciliary pocket membrane endocytosis. Here, we show that microtubule-associated serine/threonine kinase family member 4 (MAST4) is localized at the primary cilium. Suppressing MAST4 blocks serum-induced ciliary resorption, and overexpressing MAST4 accelerates ciliary resorption. Tctex-1 binds to the kinase domain of MAST4, in which the R503 and D504 residues are key to MAST4-mediated ciliary resorption. The ciliary resorption and the ciliary base localization of phospho-(T94)Tctex-1 are blocked by the knockdown of MAST4 or the expression of the catalytic-inactive site-directed MAST4 mutants. Moreover, MAST4 is required for Cdc42 activation and Rab5-mediated periciliary membrane endocytosis during ciliary resorption. These results support that MAST4 is a novel kinase that regulates ciliary resorption by modulating the ciliary base localization of phospho-(T94)Tctex-1. MAST4 is a potential new target for treating ciliopathies causally by ciliary resorption defects.


Assuntos
Ciliopatias , Proteínas Serina-Treonina Quinases , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Microtúbulos , Actinas , Proteínas Associadas aos Microtúbulos
2.
Dis Model Mech ; 16(7)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37401371

RESUMO

Oxidative stress has been implicated in the pathogenesis of age-related macular degeneration, the leading cause of blindness in older adults, with retinal pigment epithelium (RPE) cells playing a key role. To better understand the cytotoxic mechanisms underlying oxidative stress, we used cell culture and mouse models of iron overload, as iron can catalyze reactive oxygen species formation in the RPE. Iron-loading of cultured induced pluripotent stem cell-derived RPE cells increased lysosomal abundance, impaired proteolysis and reduced the activity of a subset of lysosomal enzymes, including lysosomal acid lipase (LIPA) and acid sphingomyelinase (SMPD1). In a liver-specific Hepc (Hamp) knockout murine model of systemic iron overload, RPE cells accumulated lipid peroxidation adducts and lysosomes, developed progressive hypertrophy and underwent cell death. Proteomic and lipidomic analyses revealed accumulation of lysosomal proteins, ceramide biosynthetic enzymes and ceramides. The proteolytic enzyme cathepsin D (CTSD) had impaired maturation. A large proportion of lysosomes were galectin-3 (Lgals3) positive, suggesting cytotoxic lysosomal membrane permeabilization. Collectively, these results demonstrate that iron overload induces lysosomal accumulation and impairs lysosomal function, likely due to iron-induced lipid peroxides that can inhibit lysosomal enzymes.


Assuntos
Sobrecarga de Ferro , Proteômica , Camundongos , Animais , Estresse Oxidativo , Lisossomos/metabolismo , Ferro/metabolismo , Sobrecarga de Ferro/metabolismo , Sobrecarga de Ferro/patologia , Células Epiteliais/metabolismo , Pigmentos da Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo
3.
Development ; 149(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35608020

RESUMO

Glycosaminoglycans are ubiquitously expressed polysaccharides that are attached to proteoglycans. Here, we showed that ablation of the heparan sulfate (HS) polymerase Ext1 in retinal progenitor cells did not affect initial progression of retinal angiogenesis, but it disrupted the pruning of blood vessels and establishment of arterioles and venules. In the absence of retinal HS, blood vessels were also vulnerable to high oxygen tension in early postnatal stages, which could be rescued by exogenous vascular endothelial growth factor (VEGF), consistent with the role of retinal HS in the fine-tuning of VEGF signaling. Furthermore, we observed that the retinal inner limiting membrane (ILM) was disrupted by deletion of Ext1 in a timing-specific manner, suggesting that retinal HS is required for the assembly but not the maintenance of the basement membrane. Lastly, we showed that further deletion of C4st1, a chondroitin sulfate (CS) sulfation enzyme, did not affect the assembly of the ILM but, when combined with Ext1 deletion, it aggravated the retinal permeability by disrupting the retinal glycocalyx. These results demonstrate an important role of CS and HS in establishing the barrier function of the extracellular matrix.


Assuntos
Sulfatos de Condroitina , Fator A de Crescimento do Endotélio Vascular , Membrana Basal/metabolismo , Sulfatos de Condroitina/metabolismo , Glicosaminoglicanos , Proteoglicanas de Heparan Sulfato/metabolismo , Heparitina Sulfato/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35197287

RESUMO

Rhodopsin and cone opsins are essential for light detection in vertebrate rods and cones, respectively. It is well established that rhodopsin is required for rod phototransduction, outer segment disk morphogenesis, and rod viability. However, the roles of cone opsins are less well understood. In this study, we adopted a loss-of-function approach to investigate the physiological roles of cone opsins in mice. We showed that cones lacking cone opsins do not form normal outer segments due to the lack of disk morphogenesis. Surprisingly, cone opsin-deficient cones survive for at least 12 mo, which is in stark contrast to the rapid rod degeneration observed in rhodopsin-deficient mice, suggesting that cone opsins are dispensable for cone viability. Although the mutant cones do not respond to light directly, they maintain a normal dark current and continue to mediate visual signaling by relaying the rod signal through rod-cone gap junctions. Our work reveals a striking difference between the role of rhodopsin and cone opsins in photoreceptor viability.


Assuntos
Células Fotorreceptoras Retinianas Cones/metabolismo , Pigmentos da Retina/metabolismo , Transdução de Sinais , Animais , Opsinas dos Cones/genética , Eletrorretinografia , Transdução de Sinal Luminoso , Mutação com Perda de Função , Camundongos
5.
Nat Commun ; 13(1): 374, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042858

RESUMO

Age-related macular degeneration (AMD) is the leading cause of blindness among the elderly. Dry AMD has unclear etiology and no treatment. Lipid-rich drusen are the hallmark of dry AMD. An AMD mouse model and insights into drusenogenesis are keys to better understanding of this disease. Chloride intracellular channel 4 (CLIC4) is a pleomorphic protein regulating diverse biological functions. Here we show that retinal pigment epithelium (RPE)-specific Clic4 knockout mice exhibit a full spectrum of functional and pathological hallmarks of dry AMD. Multidisciplinary longitudinal studies of disease progression in these mice support a mechanistic model that links RPE cell-autonomous aberrant lipid metabolism and transport to drusen formation.


Assuntos
Canais de Cloreto/genética , Degeneração Macular/genética , Proteínas Mitocondriais/genética , Mutação/genética , Epitélio Pigmentado da Retina/metabolismo , Animais , Morte Celular , Canais de Cloreto/deficiência , Modelos Animais de Doenças , Fundo de Olho , Homeostase , Metabolismo dos Lipídeos , Degeneração Macular/diagnóstico por imagem , Degeneração Macular/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais/deficiência , Especificidade de Órgãos/genética , Drusas Retinianas/complicações , Drusas Retinianas/diagnóstico por imagem , Drusas Retinianas/patologia , Epitélio Pigmentado da Retina/diagnóstico por imagem , Epitélio Pigmentado da Retina/fisiopatologia , Epitélio Pigmentado da Retina/ultraestrutura , Fatores de Risco , Transcrição Gênica , Visão Ocular/fisiologia
6.
Sci Rep ; 9(1): 12247, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31439888

RESUMO

Dysregulation in the extracellular matrix (ECM) microenvironment surrounding the retinal pigment epithelium (RPE) has been implicated in the etiology of proliferative vitreoretinopathy and age-related macular degeneration. The regulation of ECM remodeling by RPE cells is not well understood. We show that membrane-type matrix metalloproteinase 14 (MMP14) is central to ECM degradation at the focal adhesions in human ARPE19 cells. The matrix degradative activity, but not the assembly, of the focal adhesion is regulated by chloride intracellular channel 4 (CLIC4). CLIC4 is co-localized with MMP14 in the late endosome. CLIC4 regulates the proper sorting of MMP14 into the lumen of the late endosome and its proteolytic activation in lipid rafts. CLIC4 has the newly-identified "late domain" motif that binds to MMP14 and to Tsg101, a component of the endosomal sorting complex required for transport (ESCRT) complex. Unlike the late domain mutant CLIC4, wild-type CLIC4 can rescue the late endosomal sorting defect of MMP14. Finally, CLIC4 knockdown inhibits the apical secretion of MMP2 in polarized human RPE monolayers. These results, taken together, demonstrate that CLIC4 is a novel matrix microenvironment modulator and a novel regulator for late endosomal cargo sorting. Moreover, the late endosomal sorting of MMP14 actively regulates its surface activation in RPE cells.


Assuntos
Canais de Cloreto/metabolismo , Endossomos/metabolismo , Adesões Focais/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Canais de Cloreto/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Adesões Focais/genética , Humanos , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Ligação Proteica , Transporte Proteico , Proteólise , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
J Neurosci ; 39(18): 3376-3393, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30819798

RESUMO

Peripherin 2 (PRPH2) is a tetraspanin protein concentrated in the light-sensing cilium (called the outer segment) of the vertebrate photoreceptor. The mechanism underlying the ciliary targeting of PRPH2 and the etiology of cone dystrophy caused by PRPH2 mutations remain elusive. Here we show that the late endosome (LE) is the main waystation that critically sorts newly synthesized PRPH2 to the cilium. PRPH2 is expressed in the luminal membrane of the LE. We delineate multiple C-terminal motifs of PRPH2 that distinctively regulate its LE and ciliary targeting through ubiquitination and binding to ESCRT (Endosomal Sorting Complexes Required for Transport) component Hrs. Using the newly developed TetOn-inducible system in transfected male and female mouse cones in vivo, we show that the entry of nascent PRPH2 into the cone outer segment can be blocked by either cone dystrophy-causing C-terminal mutations of PRPH2, or by short-term perturbation of the LE or recycling endosomal traffic. These findings open new avenues of research to explore the biological role of the LE in the biosynthetic pathway and the etiology of cone dystrophy caused by PRPH2 mutations and/or malfunctions of the LE.SIGNIFICANCE STATEMENT Peripherin 2 (PRPH2) is a tetraspanin protein abundantly expressed in the light-sensing cilium, the outer segment, of the vertebrate photoreceptor. The mechanism underlying the ciliary transport of PRPH2 is unclear. The present study reveals a novel ciliary targeting pathway, in which the newly synthesized PRPH2 is first targeted to the lumen of the late endosome (LE) en route to the cilia. We deciphered the protein motifs and the machinery that regulates the LE trafficking of PRPH2. Using a novel TetOn-inducible system in transfected mouse cones, we showed that the LE pathway of PRPH2 is critical for its outer segment expression. A cone dystrophy-causing mutation impairs the LE and ciliary targeting of PRPH2, implicating the relevance of LE to cone/macular degenerative diseases.


Assuntos
Cílios/metabolismo , Endossomos/metabolismo , Periferinas/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Animais , Feminino , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
8.
Bio Protoc ; 8(6): e2773, 2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-34179289

RESUMO

The primary cilium is a non-motile sensory organelle whose assembly and disassembly are closely associated with cell cycle progression. The primary cilium is elongated from the basal body in quiescent cells and is resorbed as the cells re-enter the cell cycle. Dysregulation of ciliary dynamics has been linked with ciliopathies and other human diseases. The in vitro serum-stimulated ciliary assembly/disassembly assay has gained popularity in addressing the functions of the protein-of-interest in ciliary dynamics. Here, we describe a well-tested protocol for transfecting human retinal pigment epithelial cells (RPE-1) and performing ciliary assembly/disassembly assays on the transfected cells.

9.
EMBO Rep ; 18(8): 1460-1472, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28607034

RESUMO

The primary cilium is a plasma membrane-protruding sensory organelle that undergoes regulated assembly and resorption. While the assembly process has been studied extensively, the cellular machinery that governs ciliary resorption is less well understood. Previous studies showed that the ciliary pocket membrane is an actin-rich, endocytosis-active periciliary subdomain. Furthermore, Tctex-1, originally identified as a cytoplasmic dynein light chain, has a dynein-independent role in ciliary resorption upon phosphorylation at Thr94. Here, we show that the remodeling and endocytosis of the ciliary pocket membrane are accelerated during ciliary resorption. This process depends on phospho(T94)Tctex-1, actin, and dynamin. Mechanistically, Tctex-1 physically and functionally interacts with the actin dynamics regulators annexin A2, Arp2/3 complex, and Cdc42. Phospho(T94)Tctex-1 is required for Cdc42 activation before the onset of ciliary resorption. Moreover, inhibiting clathrin-dependent endocytosis or suppressing Rab5GTPase on early endosomes effectively abrogates ciliary resorption. Taken together with the epistasis functional assays, our results support a model in which phospho(T94)Tctex-1-regulated actin polymerization and periciliary endocytosis play an active role in orchestrating the initial phase of ciliary resorption.


Assuntos
Actinas/fisiologia , Cílios/fisiologia , Dineínas/metabolismo , Linhagem Celular , Clatrina/fisiologia , Dinaminas , Dineínas/genética , Endocitose , Células Epiteliais , Humanos , Fosforilação , Multimerização Proteica , Retina/citologia
10.
Neurogenesis (Austin) ; 4(1): e1316887, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28573151

RESUMO

Accumulating findings have begun to unveil the important role of the endosomal machinery in the nervous system development. Endosomes have been linked to the differential segregation of cell fate determining molecules in asymmetrically dividing progenitors during neurogenesis. Additionally, the precise removal and reinsertion of membrane components through endocytic trafficking regulates the spatial and temporal distribution of signaling receptors and adhesion molecules, which determine the morphology and motility of migrating neurons. Emerging evidence suggests that the role of the endosomal sorting adaptors is dependent upon cell type and developmental stage. The repertoire of the signaling receptors and/or adhesion molecules sorted by the endosome during these processes remains to be explored. In this commentary, we will briefly address the progress in this research field.

11.
Artigo em Inglês | MEDLINE | ID: mdl-28062565

RESUMO

The cilium is an evolutionally conserved apical membrane protrusion that senses and transduces diverse signals to regulate a wide range of cellular activities. The cilium is dynamic in length, structure, and protein composition. Dysregulation of ciliary dynamics has been linked with ciliopathies and other human diseases. The cilium undergoes cell-cycle-dependent assembly and disassembly, with ciliary resorption linked with G1-S transition and cell-fate choice. In the resting cell, the cilium remains sensitive to environmental cues for remodeling during tissue homeostasis and repair. Recent findings further reveal an interplay between the cilium and extracellular vesicles and identify bioactive cilium-derived vesicles, posing a previously unrecognized role of cilia for sending signals. The photoreceptor outer segment is a notable dynamic cilium. A recently discovered protein transport mechanism in photoreceptors maintains light-regulated homeostasis of ciliary length.


Assuntos
Cílios/fisiologia , Animais , Ciclo Celular/fisiologia , Linhagem da Célula , Homeostase , Humanos
12.
Development ; 143(17): 3143-53, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27471254

RESUMO

Emerging evidence suggests that endocytic trafficking of adhesion proteins plays a crucial role in neuronal migration during neocortical development. However, molecular insights into these processes remain elusive. Here, we study the early endosomal protein Smad anchor for receptor activation (SARA) in the developing mouse brain. SARA is enriched at the apical endfeet of radial glia of the neocortex. Although SARA knockdown did not lead to detectable neurogenic phenotypes, SARA-suppressed neurons exhibited impaired orientation and migration across the intermediate zone. Mechanistically, we show that SARA knockdown neurons exhibit increased surface expression of the L1 cell adhesion molecule. Neurons ectopically expressing L1 phenocopy the migration and orientation defects caused by SARA knockdown and display increased contact with neighboring neurites. L1 knockdown effectively rescues SARA suppression-induced phenotypes. SARA knockdown neurons eventually overcome their migration defect and enter later into the cortical plate. Nevertheless, these neurons localize at more superficial cortical layers than their control counterparts. These results suggest that SARA regulates the orientation, multipolar-to-bipolar transition and the positioning of cortical neurons via modulating surface L1 expression.


Assuntos
Proteínas de Transporte/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neocórtex/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Neurônios/metabolismo , Serina Endopeptidases/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Proteínas de Transporte/genética , Linhagem Celular , Movimento Celular/genética , Movimento Celular/fisiologia , Eletroporação , Feminino , Proteínas de Ligação ao GTP , Humanos , Immunoblotting , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Neocórtex/citologia , Molécula L1 de Adesão de Célula Nervosa/genética , Neurogênese/genética , Neurogênese/fisiologia , Gravidez , Transporte Proteico/genética , Transporte Proteico/fisiologia , Serina Endopeptidases/genética
13.
J Neurosci ; 36(8): 2473-93, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26911694

RESUMO

Mutations in the Tulp1 gene cause severe, early-onset retinitis pigmentosa (RP14) in humans. In the retina, Tulp1 is mainly expressed in photoreceptors that use ribbon synapses to communicate with the inner retina. In the present study, we demonstrate that Tulp1 is highly enriched in the periactive zone of photoreceptor presynaptic terminals where Tulp1 colocalizes with major endocytic proteins close to the synaptic ribbon. Analyses of Tulp1 knock-out mice demonstrate that Tulp1 is essential to keep endocytic proteins enriched at the periactive zone and to maintain high levels of endocytic activity close to the synaptic ribbon. Moreover, we have discovered a novel interaction between Tulp1 and the synaptic ribbon protein RIBEYE, which is important to maintain synaptic ribbon integrity. The current findings suggest a new model for Tulp1-mediated localization of the endocytic machinery at the periactive zone of ribbon synapses and offer a new rationale and mechanism for vision loss associated with genetic defects in Tulp1.


Assuntos
Endocitose/fisiologia , Proteínas do Olho/metabolismo , Células Fotorreceptoras/metabolismo , Sinapses/metabolismo , Sequência de Aminoácidos , Animais , Bovinos , Proteínas do Olho/análise , Proteínas do Olho/genética , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Técnicas de Cultura de Órgãos , Células Fotorreceptoras/química , Retina/química , Retina/metabolismo , Sinapses/química , Sinapses/genética
14.
Nat Commun ; 7: 10412, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26786190

RESUMO

Chloride intracellular channel 4 (CLIC4) is a mammalian homologue of EXC-4 whose mutation is associated with cystic excretory canals in nematodes. Here we show that CLIC4-null mouse embryos exhibit impaired renal tubulogenesis. In both developing and developed kidneys, CLIC4 is specifically enriched in the proximal tubule epithelial cells, in which CLIC4 is important for luminal delivery, microvillus morphogenesis, and endolysosomal biogenesis. Adult CLIC4-null proximal tubules display aberrant dilation. In MDCK 3D cultures, CLIC4 is expressed on early endosome, recycling endosome and apical transport carriers before reaching its steady-state apical membrane localization in mature lumen. CLIC4 suppression causes impaired apical vesicle coalescence and central lumen formation, a phenotype that can be rescued by Rab8 and Cdc42. Furthermore, we show that retromer- and branched actin-mediated trafficking on early endosome regulates apical delivery during early luminogenesis. CLIC4 selectively modulates retromer-mediated apical transport by negatively regulating the formation of branched actin on early endosomes.


Assuntos
Actinas/metabolismo , Canais de Cloreto/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Canais de Cloreto/genética , Cães , Endossomos/metabolismo , Exocitose/genética , Exocitose/fisiologia , Imunoprecipitação , Células Madin Darby de Rim Canino , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/genética , Transporte Proteico/genética , Transporte Proteico/fisiologia
15.
Cell Cycle ; 14(9): 1379-88, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25928583

RESUMO

Dynein light chains are accessory subunits of the cytoplasmic dynein complex, a minus-end directed microtubule motor. Here, we demonstrate that the dynein light chain Tctex-1 associates with unattached kinetochores and is essential for accurate chromosome segregation. Tctex-1 knockdown in cells does not affect the localization and function of dynein at the kinetochore, but produces a prolonged mitotic arrest with a few misaligned chromosomes, which are subsequently missegregated during anaphase. This function is independent of Tctex-1's association with dynein. The kinetochore localization of Tctex-1 is independent of the ZW10-dynein pathway, but requires the Ndc80 complex. Thus, our findings reveal a dynein independent role of Tctex-1 at the kinetochore to enhance the stability of kinetochore-microtubule attachment.


Assuntos
Dineínas/metabolismo , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Linhagem Celular , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Proteínas do Citoesqueleto , Dineínas/genética , Humanos , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Transfecção
16.
Dev Cell ; 32(6): 731-42, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25805137

RESUMO

The outer segment (OS) of the rod photoreceptor is a light-sensing cilium containing ~1,000 membrane-bound discs. Each day, discs constituting the distal tenth of the OS are shed, whereas nascent discs are formed at the base of the OS through the incorporation of molecules transported from the inner segment. The mechanisms regulating these processes remain elusive. Here, we show that rhodopsin preferentially enters the OS in the dark. Photoexcitation of post-Golgi rhodopsins retains them in the inner segment. Disc-rim protein peripherin2/rds enters the OS following a rhythm complementary to that of rhodopsin. Light-dark cycle-regulated protein trafficking serves as a mechanism to segregate rhodopsin-rich and peripherin2/rds-rich discs into alternating stacks, which are flanked by characteristic cytoplasmic pockets. This periodic cytostructure divides the OS into approximately ten fractions, each containing discs synthesized in a single day. This mechanism may explain how the rod photoreceptor balances the quantity of discs added and removed daily.


Assuntos
Transporte Proteico/fisiologia , Segmento Interno das Células Fotorreceptoras da Retina/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Rodopsina/metabolismo , Segmento Externo da Célula Bastonete/fisiologia , Animais , Cílios , Luz , Camundongos , Camundongos Endogâmicos C57BL , Periferinas , Ratos , Ratos Sprague-Dawley , Rodopsina/biossíntese
17.
Cilia ; 4: 4, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25664179

RESUMO

BACKGROUND: Cilia are vital to various cellular and sensory functions. The pathway by which ciliary membrane proteins translocate through the transition zone is not well understood. Direct morphological characterization of ciliary cargoes in transit remains lacking. In the vertebrate photoreceptor, rhodopsin is synthesized and transported from the inner segment to the disc membranes of the outer segment (OS), which is a modified cilium. To date, the membrane topology of the basal OS and the mechanisms by which rhodopsin is transported through the transition zone (i.e., connecting cilium) and by which nascent disc membranes are formed remain controversial. RESULTS: Using an antibody recognizing its cytoplasmic C-terminus, we localize rhodopsin on both the plasma membrane and lumen of the connecting cilium by immuno-electron microscopy (EM). We also use transmission EM to visualize the electron-dense enzymatic products derived from the rhodopsin-horseradish peroxidase (HRP) fusion in transfected rodent rods. In the connecting cilium, rhodopsin is not only expressed in the plasma membrane but also in the lumen on two types of membranous carriers, long smooth tubules and small, coated, filament-bound vesicles. Additionally, membrane-bound rhodopsin carriers are also found in close proximity to the nascent discs at the basal OS axoneme and in the distal inner segment. This topology-indicative HRP-rhodopsin reporter shows that the nascent basalmost discs and the mature discs have the same membrane topology, with no indication of evagination or invagination from the basal OS plasma membranes. Serial block face and focus ion beam scanning EM analyses both indicate that the transport carriers enter the connecting cilium lumen from either the basal body lumen or cytoplasmic space between the axonemal microtubules and the ciliary plasma membrane. CONCLUSIONS: Our results suggest the existence of multiple ciliary gate entry pathways in rod photoreceptors. Rhodopsin is likely transported across the connecting cilium on the plasma membrane and through the lumens on two types of tubulovesicular carriers produced in the inner segment. Our findings agree with a previous model that rhodopsin carriers derived from the cell body may fuse directly onto nascent discs as they grow and mature.

18.
Proc Natl Acad Sci U S A ; 111(11): 4127-32, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24591614

RESUMO

Emerging data suggest that in polarized epithelial cells newly synthesized apical and basolateral plasma membrane proteins traffic through different endosomal compartments en route to the respective cell surface. However, direct evidence for trans-endosomal pathways of plasma membrane proteins is still missing and the mechanisms involved are poorly understood. Here, we imaged the entire biosynthetic route of rhodopsin-GFP, an apical marker in epithelial cells, synchronized through recombinant conditional aggregation domains, in live Madin-Darby canine kidney cells using spinning disk confocal microscopy. Our experiments directly demonstrate that rhodopsin-GFP traffics through apical recycling endosomes (AREs) that bear the small GTPase Rab11a before arriving at the apical membrane. Expression of dominant-negative Rab11a drastically reduced apical delivery of rhodopsin-GFP and caused its missorting to the basolateral membrane. Surprisingly, functional inhibition of dynamin-2 trapped rhodopsin-GFP at AREs and caused aberrant accumulation of coated vesicles on AREs, suggesting a previously unrecognized role for dynamin-2 in the scission of apical carrier vesicles from AREs. A second set of experiments, using a unique method to carry out total internal reflection fluorescence microscopy (TIRFM) from the apical side, allowed us to visualize the fusion of rhodopsin-GFP carrier vesicles, which occurred randomly all over the apical plasma membrane. Furthermore, two-color TIRFM showed that Rab11a-mCherry was present in rhodopsin-GFP carrier vesicles and was rapidly released upon fusion onset. Our results provide direct evidence for a role of AREs as a post-Golgi sorting hub in the biosynthetic route of polarized epithelia, with Rab11a regulating cargo sorting at AREs and carrier vesicle docking at the apical membrane.


Assuntos
Vias Biossintéticas/fisiologia , Polaridade Celular/fisiologia , Células Epiteliais/citologia , Rodopsina/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Primers do DNA/genética , Cães , Complexo de Golgi/metabolismo , Immunoblotting , Imuno-Histoquímica , Células Madin Darby de Rim Canino , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Plasmídeos/genética , Transporte Proteico/fisiologia , Rodopsina/biossíntese , Vesículas Transportadoras/metabolismo
19.
Nat Cell Biol ; 15(12): 1387-97, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24296415

RESUMO

Cilia are present across most eukaryotic phyla and have diverse sensory and motility roles in animal physiology, cell signalling and development. Their biogenesis and maintenance depend on vesicular and intraciliary (intraflagellar) trafficking pathways that share conserved structural and functional modules. The functional units of the interconnected pathways, which include proteins involved in membrane coating as well as small GTPases and their accessory factors, were first experimentally associated with canonical vesicular trafficking. These components are, however, ancient, having been co-opted by the ancestral eukaryote to establish the ciliary organelle, and their study can inform us about ciliary biology in higher organisms.


Assuntos
Cílios/fisiologia , Animais , Evolução Biológica , Membrana Celular/metabolismo , Centríolos/fisiologia , Endossomos/metabolismo , Flagelos/metabolismo , Complexo de Golgi/metabolismo , Humanos , Redes e Vias Metabólicas , Transporte Proteico , Vesículas Transportadoras/metabolismo
20.
Dev Cell ; 26(4): 358-68, 2013 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-23954591

RESUMO

Primary cilia undergo cell-cycle-dependent assembly and disassembly. Emerging data suggest that ciliary resorption is a checkpoint for S phase reentry and that the activation of phospho(T94)Tctex-1 couples these two events. However, the environmental cues and molecular mechanisms that trigger these processes remain unknown. Here, we show that insulin-like growth-1 (IGF-1) accelerates G1-S progression by causing cilia to resorb. The mitogenic signals of IGF-1 are predominantly transduced through IGF-1 receptor (IGF-1R) on the cilia of fibroblasts and epithelial cells. At the base of the cilium, phosphorylated IGF-1R activates an AGS3-regulated Gßγ signaling pathway that subsequently recruits phospho(T94)Tctex-1 to the transition zone. Perturbing any component of this pathway in cortical progenitors induces premature neuronal differentiation at the expense of proliferation. These data suggest that during corticogenesis, a cilium-transduced, noncanonical IGF-1R-Gßγ-phospho(T94)Tctex-1 signaling pathway promotes the proliferation of neural progenitors through modulation of ciliary resorption and G1 length.


Assuntos
Ciclo Celular/efeitos dos fármacos , Cílios/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Cílios/efeitos dos fármacos , Dineínas/metabolismo , Humanos , Camundongos , Mitógenos/farmacologia , Modelos Biológicos , Neocórtex/citologia , Neocórtex/efeitos dos fármacos , Neocórtex/embriologia , Neocórtex/metabolismo , Fosforilação/efeitos dos fármacos , Receptor IGF Tipo 1/metabolismo , Fase S/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA