Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 303(Pt 1): 134946, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35569634

RESUMO

As plastic consumption has increased, environmental problems associated with the accumulation of plastic wastes have started to emerge. These include the non-degradability of plastic and its disintegration into sub-micron particles. Although some biodegradable plastic products have been developed to relieve the landfill and leakage burden, a significant portion of discarded plastics are inevitably still incinerated. The concern here is that incinerating plastics may result in the emission of toxic volatile organic compounds (VOCs). Moreover, lack of policy and the limited market share contributes to the indiscriminate discarding of biodegradable plastics, whereby it is mixed and subsequently incinerated with non-degradable plastics. The aim of this study was therefore to qualitatively and quantitatively analyze the VOCs emitted from both non-degradable and biodegradable plastics during combustion employing gas chromatography mass spectrometry. Here, non-degradable poly(vinyl chloride) and poly(ethylene terephthalate) emitted 10-115 and 6-22 ppmv of VOCs, respectively. These emission levels were more than 100 times higher than the VOC concentrations of 0.1-0.5 and 0.1-1.8 ppmv obtained for biodegradable polyhydroxyalkanoate and polylactic acid, respectively. Notably, due to the presence of a repeating butylene group in both non-degradable and biodegradable plastics, 1,3-butadiene accounted for the highest concentration among the VOCs identified, with concentrations of 6-116 ppmv and 0.5-558 ppmv obtained, respectively. During the evaluation of gas barrier films employed for food packaging purposes, non-degradable aluminum-coated multilayered films emitted 9-515 ppmv of VOCs, compared to the 2-41 ppmv VOCs emitted by biodegradable nanocellulose/nanochitin-coated films. Despite the significantly lower levels of VOCs emitted during the incineration of biodegradable plastics, this does not represent suitable waste treatment solution because VOCs are still emitted during incomplete combustion. This study aims to encourage further research into diverse combustion conditions for plastics and stimulate discussions on the fate of discarded plastics.


Assuntos
Plásticos Biodegradáveis , Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas , Incineração , Plásticos/química , Compostos Orgânicos Voláteis/análise
2.
Adv Sci (Weinh) ; 8(6): 2003155, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33747729

RESUMO

The demand for face masks is increasing exponentially due to the coronavirus pandemic and issues associated with airborne particulate matter (PM). However, both conventional electrostatic- and nanosieve-based mask filters are single-use and are not degradable or recyclable, which creates serious waste problems. In addition, the former loses function under humid conditions, while the latter operates with a significant air-pressure drop and suffers from relatively fast pore blockage. Herein, a biodegradable, moisture-resistant, highly breathable, and high-performance fibrous mask filter is developed. Briefly, two biodegradable microfiber and nanofiber mats are integrated into a Janus membrane filter and then coated by cationically charged chitosan nanowhiskers. This filter is as efficient as the commercial N95 filter and removes 98.3% of 2.5 µm PM. The nanofiber physically sieves fine PM and the microfiber provides a low pressure differential of 59 Pa, which is comfortable for human breathing. In contrast to the dramatic performance decline of the commercial N95 filter when exposed to moisture, this filter exhibits negligible performance loss and is therefore multi-usable because the permanent dipoles of the chitosan adsorb ultrafine PM (e.g., nitrogen and sulfur oxides). Importantly, this filter completely decomposes within 4 weeks in composting soil.

3.
Molecules ; 25(7)2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32224956

RESUMO

By simple soaking titanium dioxide (TiO2) films in an aqueous Na2S solution, we could prepare surface-modified photoanodes for application to dye-sensitized solar cells (DSSCs). An improvement in both the open-circuit voltage (Voc) and the fill factor (FF) was observed in the DSSC with the 5 min-soaked photoanode, compared with those of the control cell without any modification. The UV-visible absorbance spectra, UPS valence band spectra, and dark current measurements revealed that the Na2S modification led to the formation of anions on the TiO2 surface, and thereby shifted the conduction band edge of TiO2 in the negative (upward) direction, inducing an increase of 29 mV in the Voc. It was also found that the increased FF value in the surface-treated device was attributed to an elevation in the shunt resistance.


Assuntos
Corantes , Energia Solar , Titânio , Algoritmos , Eletricidade , Modelos Teóricos , Análise Espectral , Sulfetos , Propriedades de Superfície
4.
Nanomaterials (Basel) ; 9(12)2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31756910

RESUMO

At an elevated temperature of 90 °C, a chemical bath deposition using an aqueous solution of Zn(NO3)2·6H2O and (CH2)6N4 resulted in the formation of both nanoflowers and microrods of ZnO on F-doped SnO2 glass with a seed layer. The nanoflowers and microrods were sensitized with dyes for application to the photoelectrodes of dye-sensitized solar cells (DSSCs). By extending the growth time of ZnO, the formation of nanoflowers was reduced and the formation of microrods favored. As the growth time was increased from 4 to 6 and then to 8 h, the open circuit voltage (Voc) values of the DSSCs were increased, whilst the short circuit current (Jsc) values varied only slightly. Changes in the dye-loading amount, dark current, and electrochemical impedance were monitored and they revealed that the increase in Voc was found to be due to a retardation of the charge recombination between photoinjected electrons and I3- ions and resulted from a reduction in the surface area of ZnO microrods. A reduced surface area decreased the dye contents adsorbed on the ZnO microrods, and thereby decreased the light harvesting efficiency (LHE). An increase in the electron collection efficiency attributed to the suppressed charge recombination counteracted the decreased LHE, resulting in comparable Jsc values regardless of the growth time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA