Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Sci Rep ; 13(1): 8175, 2023 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210443

RESUMO

Since the etiology of diabetic chronic kidney disease (CKD) is multifactorial, studies on DNA methylation for kidney function deterioration have rarely been performed despite the need for an epigenetic approach. Therefore, this study aimed to identify epigenetic markers associated with CKD progression based on the decline in the estimated glomerular filtration rate in diabetic CKD in Korea. An epigenome-wide association study was performed using whole blood samples from 180 CKD recruited from the KNOW-CKD cohort. Pyrosequencing was also performed on 133 CKD participants as an external replication analysis. Functional analyses, including the analysis of disease-gene networks, reactome pathways, and protein-protein interaction networks, were conducted to identify the biological mechanisms of CpG sites. A phenome-wide association study was performed to determine the associations between CpG sites and other phenotypes. Two epigenetic markers, cg10297223 on AGTR1 and cg02990553 on KRT28 indicated a potential association with diabetic CKD progression. Based on the functional analyses, other phenotypes (blood pressure and cardiac arrhythmia for AGTR1) and biological pathways (keratinization and cornified envelope for KRT28) related to CKD were also identified. This study suggests a potential association between the cg10297223 and cg02990553 and the progression of diabetic CKD in Koreans. Nevertheless, further validation is needed through additional studies.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Insuficiência Renal Crônica , Humanos , Epigenoma , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/complicações , Taxa de Filtração Glomerular , República da Coreia , Progressão da Doença , Fatores de Risco
2.
BMB Rep ; 56(6): 347-352, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37013346

RESUMO

The protein family of poly (ADP-ribose) polymerases (PARPs) is comprised of multifunctional nuclear enzymes. Several PARP inhibitors have been developed as new anticancer drugs to combat resistance to chemotherapy. Herein, we characterized PARP4 mRNA expression profiles in cisplatin-sensitive and cisplatin-resistant ovarian cancer cell lines. PARP4 mRNA expression was significantly upregulated in cisplatin-resistant ovarian cancer cell lines, and this upregulation was associated with the hypomethylation of specific cytosine-phosphate-guanine (CpG) sites (cg18582260 and cg17117459) on its promoter. Reduced PARP4 expression was restored by treating cisplatin-sensitive cell lines with a demethylation agent, implicating the epigenetic regulation of PARP4 expression by promoter methylation. Depletion of PARP4 expression in cisplatin-resistant cell lines reduced cisplatin chemoresistance and promoted cisplatin-induced DNA fragmentation. The differential mRNA expression and DNA methylation status at specific PARP4 promoter CpG sites (cg18582260 and cg17117459) according to cisplatin responses, was further validated in primary ovarian tumor tissues. The results showed significantly increased PARP4 mRNA expressions and decreased DNA methylation levels at specific PARP4 promoter CpG sites (cg18582260 and cg17117459) in cisplatin-resistant patients. Additionally, the DNA methylation status at cg18582260 CpG sites in ovarian tumor tissues showed fairly clear discrimination between cisplatin-resistant patients and cisplatin-sensitive patients, with high accuracy (area under the curve = 0.86, P = 0.003845). Our findings suggest that the DNA methylation status of PARP4 at the specific promoter site (cg18582260) may be a useful diagnostic biomarker for predicting the response to cisplatin in ovarian cancer patients. [BMB Reports 2023; 56(6): 347-352].


Assuntos
Cisplatino , Neoplasias Ovarianas , Feminino , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética , Fosfatos , Linhagem Celular Tumoral , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Metilação de DNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ilhas de CpG/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Nucleares/metabolismo
3.
J Am Soc Nephrol ; 34(5): 857-875, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36720675

RESUMO

SIGNIFICANCE STATEMENT: eGFR slope has been used as a surrogate outcome for progression of CKD. However, genetic markers associated with eGFR slope among patients with CKD were unknown. We aimed to identify genetic susceptibility loci associated with eGFR slope. A two-phase genome-wide association study identified single nucleotide polymorphisms (SNPs) in TPPP and FAT1-LINC02374 , and 22 of them were used to derive polygenic risk scores that mark the decline of eGFR by disrupting binding of nearby transcription factors. This work is the first to identify the impact of TPPP and FAT1-LINC02374 on CKD progression, providing predictive markers for the decline of eGFR in patients with CKD. BACKGROUND: The incidence of CKD is associated with genetic factors. However, genetic markers associated with the progression of CKD have not been fully elucidated. METHODS: We conducted a genome-wide association study among 1738 patients with CKD, mainly from the KoreaN cohort study for Outcomes in patients With CKD. The outcome was eGFR slope. We performed a replication study for discovered single nucleotide polymorphisms (SNPs) with P <10 -6 in 2498 patients with CKD from the Chronic Renal Insufficiency Cohort study. Several expression quantitative trait loci (eQTL) studies, pathway enrichment analyses, exploration of epigenetic architecture, and predicting disruption of transcription factor (TF) binding sites explored potential biological implications of the loci. We developed and evaluated the effect of polygenic risk scores (PRS) on incident CKD outcomes. RESULTS: SNPs in two novel loci, TPPP and FAT1-LINC02374 , were replicated (rs59402340 in TPPP , Pdiscovery =7.11×10 -7 , PCRIC =8.13×10 -4 , Pmeta =7.23×10 -8 ; rs28629773 in FAT1-LINC02374 , Pdiscovery =6.08×10 -7 , PCRIC =4.33×10 -2 , Pmeta =1.87×10 -7 ). The eQTL studies revealed that the replicated SNPs regulated the expression level of nearby genes associated with kidney function. Furthermore, these SNPs were near gene enhancer regions and predicted to disrupt the binding of TFs. PRS based on the independently significant top 22 SNPs were significantly associated with CKD outcomes. CONCLUSIONS: This study demonstrates that SNP markers in the TPPP and FAT1-LINC02374 loci could be predictive markers for the decline of eGFR in patients with CKD.


Assuntos
Estudo de Associação Genômica Ampla , Insuficiência Renal Crônica , Humanos , Estudos de Coortes , Marcadores Genéticos , Insuficiência Renal Crônica/genética , Locos de Características Quantitativas , Polimorfismo de Nucleotídeo Único , Progressão da Doença , Predisposição Genética para Doença
4.
Metabolites ; 12(11)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36422264

RESUMO

Early detection and proper management of chronic kidney disease (CKD) can delay progression to end-stage kidney disease. We applied metabolomics to discover novel biomarkers to predict the risk of deterioration in patients with different causes of CKD. We enrolled non-dialytic diabetic nephropathy (DMN, n = 124), hypertensive nephropathy (HTN, n = 118), and polycystic kidney disease (PKD, n = 124) patients from the KNOW-CKD cohort. Within each disease subgroup, subjects were categorized as progressors (P) or non-progressors (NP) based on the median eGFR slope. P and NP pairs were randomly selected after matching for age, sex, and baseline eGFR. Targeted metabolomics was performed to quantify 188 metabolites in the baseline serum samples. We selected ten progression-related biomarkers for DMN and nine biomarkers each for HTN and PKD. Clinical parameters showed good ability to predict DMN (AUC 0.734); however, this tendency was not evident for HTN (AUC 0.659) or PKD (AUC 0.560). Models constructed with selected metabolites and clinical parameters had better ability to predict CKD progression than clinical parameters only. When selected metabolites were used in combination with clinical indicators, random forest prediction models for CKD progression were constructed with AUCs of 0.826, 0.872, and 0.834 for DMN, HTN, and PKD, respectively. Select novel metabolites identified in this study can help identify high-risk CKD patients who may benefit from more aggressive medical treatment.

5.
Sci Rep ; 11(1): 12511, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131232

RESUMO

Ischemic preconditioning (IPC) significantly reduces ischemia-reperfusion injury in the brain by inducing ischemic tolerance. Although emerging evidence suggests that microRNAs (miRNAs) contribute to the pathogenesis of brain ischemia and IPC-induced neuroprotection, the role of miRNAs and their underlying mechanisms are still unclear. IPC was induced in male C57BL/6 mice by brief bilateral common carotid artery occlusion. After 24 h, mice underwent transient middle cerebral artery occlusion followed by 3 h of reperfusion. Expression levels of messenger RNAs (mRNAs) and proteins were examined in the ipsilateral cortex, and mimics and inhibitors of selective miRNAs were transfected into Neuro-2a cells before oxygen-glucose deprivation (OGD). Post-IPC miRNA expression profiling identified neuroprotection-associated changes in miRNA expression in the ipsilateral cortex after ischemic stroke. Among them, miR-33-5p and miR-135b-5p were significantly downregulated by IPC. Inhibition of miR-33-5p and miR-135b-5p expression protected Neuro-2a cells from OGD-induced apoptosis. Inhibition of these two miRNAs significantly increased mRNA and protein levels of ATP-binding cassette subfamily A member 1 (ABCA1), and a binding assay showed that these two miRNAs showed specificity for Abca1 mRNA. Overexpression of ABCA1 decreased the Bax/Bcl2 mRNA ratio and activation of caspase-9 and caspase-3, whereas knockdown of ABCA1 expression increased the Bax/Bcl2 mRNA ratio and the percentage of Neuro-2a cells with a loss of mitochondrial membrane potential after OGD-treatment. In conclusion, ABCA1 expression is regulated by miR-33-5p and miR-135b-5p. Increased ABCA1 expression following IPC exerts a protective influence against cerebral ischemia via suppression of a mitochondria-dependent apoptosis pathway.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/genética , Isquemia Encefálica/genética , MicroRNAs/genética , Traumatismo por Reperfusão/genética , Animais , Apoptose/genética , Encéfalo/metabolismo , Encéfalo/patologia , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Humanos , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/patologia , Precondicionamento Isquêmico/métodos , Camundongos , Neuroproteção/genética , Oxigênio/metabolismo , Traumatismo por Reperfusão/patologia
6.
Biochem Biophys Res Commun ; 510(3): 364-369, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30712944

RESUMO

SPRY domain-containing SOCS box protein 1 (SPSB1) is an E3 ligase adaptor protein with unknown functions in cancer cells. In this study, we found that SPSB1 knockdown markedly decreased the viability and migration of ovarian cancer cells, while ectopic SPSB1 overexpression in IL-3-dependent Ba/F3 cells significantly increased their proliferation rate compared with empty vector-transfected cells. SPSB1 knockdown significantly elevated p21 protein and mRNA levels and induced apoptosis in ovarian cancer cells, as evidenced by increased levels of cleaved PARP and decreased levels of Bcl-2. Notably, mechanistic investigations revealed that SPSB1 accelerated p21 destabilization by directly interacting with p21 and promoting its ubiquitin-mediated proteasomal degradation. Taken together, our findings provide novel insights into the role of SPSB1 in ovarian cancer cells.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Neoplasias Ovarianas/metabolismo , Proteínas Supressoras da Sinalização de Citocina/fisiologia , Animais , Apoptose , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Feminino , Inativação Gênica , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Neoplasias Ovarianas/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Ubiquitina/metabolismo
7.
J Stroke ; 20(3): 350-361, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30309230

RESUMO

BACKGROUND AND PURPOSE: The pathogenesis of moyamoya disease (MMD) remains poorly understood, and no reliable molecular biomarkers for MMD have been identified to date. The present study aimed to identify epigenetic biomarkers for use in the diagnosis of MMD. METHODS: We performed integrated analyses of gene expression profiles and DNA methylation profiles in endothelial colony forming cells (ECFCs) from three patients with MMD and two healthy individuals. Candidate gene mRNA expression and DNA methylation status were further validated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and pyrosequencing analysis of an expanded ECFC sample set from nine patients with MMD and ten controls. We evaluated the diagnostic accuracy of the potential biomarkers identified here using receiver operating characteristic curve analyses and further measured major angiogenic factor expression levels using a tube formation assay and RT-qPCR. RESULTS: Five candidate genes were selected via integrated analysis; all five were upregulated by hypomethylation of specific promoter CpG sites. After further validation in an expanded sample set, we identified a candidate biomarker gene, sortilin 1 (SORT1). DNA methylation status at a specific SORT1 promoter CpG site in ECFCs readily distinguished patients with MMD from the normal controls with high accuracy (area under the curve 0.98, sensitivity 83.33%, specificity 100%). Furthermore, SORT1 overexpression suppressed endothelial cell tube formation and modulated major angiogenic factor and matrix metalloproteinase-9 expression, implying SORT1 involvement in MMD pathogenesis. CONCLUSION: s Our findings suggest that DNA methylation status at the SORT1 promoter CpG site may be a potential biomarker for MMD.

8.
Korean J Physiol Pharmacol ; 22(1): 43-51, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29302211

RESUMO

Although cisplatin is one of the most effective antitumor drugs for ovarian cancer, the emergence of chemoresistance to cisplatin in over 80% of initially responsive patients is a major barrier to successful therapy. The precise mechanisms underlying the development of cisplatin resistance are not fully understood, but alteration of DNA methylation associated with aberrant gene silencing may play a role. To identify epigenetically regulated genes directly associated with ovarian cancer cisplatin resistance, we compared the expression and methylation profiles of cisplatin-sensitive and -resistant human ovarian cancer cell lines. We identified α-Nacetylgalactosaminidase (NAGA) as one of the key candidate genes for cisplatin drug response. Interestingly, in cisplatin-resistant cell lines, NAGA was significantly downregulated and hypermethylated at a promoter CpG site at position +251 relative to the transcriptional start site. Low NAGA expression in cisplatin-resistant cell lines was restored by treatment with a DNA demethylation agent, indicating transcriptional silencing by hyper-DNA methylation. Furthermore, overexpression of NAGA in cisplatin-resistant lines induced cytotoxicity in response to cisplatin, whereas depletion of NAGA expression increased cisplatin chemoresistance, suggesting an essential role of NAGA in sensitizing ovarian cells to cisplatin. These findings indicate that NAGA acts as a cisplatin sensitizer and its gene silencing by hypermethylation confers resistance to cisplatin in ovarian cancer. Therefore, we suggest NAGA may be a promising potential therapeutic target for improvement of sensitivity to cisplatin in ovarian cancer.

9.
Exp Mol Med ; 49(5): e335, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28524180

RESUMO

Metastasis is a major cause of therapeutic failure in ovarian cancer. To elucidate molecular mechanisms of ovarian cancer metastasis, we previously established a metastatic xenograft mouse model using human ovarian carcinoma SK-OV-3 cells. Using gene expression profiling, we found that γ-aminobutyric acid (GABA)A receptor π subunit (GABRP) expression was upregulated (>4-fold) in metastatic tissues from our xenograft mice compared with SK-OV-3 cells. Importantly, GABRP knockdown diminished the migration and invasion of SK-OV-3 cells, and reduced extracellular signal-regulated kinase (ERK) activation while overexpression of GABRP exhibited significantly increased cell migration, invasion and ERK activation. Moreover, treatment with the mitogen-activated protein kinase (MAPK)/ERK kinase (MEK) inhibitor U0126 similarly suppressed the migration and invasion of SK-OV-3 cells, implying that GABRP promotes these cellular behaviors by activating the MAPK/ERK pathway. Using genome-wide DNA methylation profiling, we identified hypomethylated CpG sites in the GABRP promoter in metastatic tissues from the xenograft mice compared with SK-OV-3 cells. Treatment with a DNA methyltransferase inhibitor demonstrated that methylation at -963 bp from the GABRP transcription start site (-963 CpG site) was critical for the epigenetic regulation of GABRP. Finally, we analyzed human ovarian cancer patient samples and showed DNA hypomethylation at the GABRP -963 CpG site in advanced stage, but not early-stage, primary tumors compared with their paired normal tissues. These findings suggest that GABRP enhances the aggressive phenotype of ovarian cancer cells, and that the DNA methylation status of the GABRP -963 CpG site may be useful for predicting the metastatic potential in ovarian cancer patients.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma/genética , Epigênese Genética , Neoplasias Ovarianas/genética , Fenótipo , Receptores de GABA-A/genética , Adulto , Idoso , Animais , Carcinoma/metabolismo , Carcinoma/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Ilhas de CpG , Metilação de DNA , DNA-Citosina Metilases/antagonistas & inibidores , Feminino , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Regiões Promotoras Genéticas , Receptores de GABA-A/metabolismo
10.
Yonsei Med J ; 58(1): 27-34, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27873492

RESUMO

PURPOSE: Ovarian cancer (OC) is the most fatal of gynecological malignancies with a high rate of recurrence. We aimed to evaluate the expression of solute carrier family 6, member 12 (SLC6A12) and methylation of its promoter CpG sites in a xenograft mouse model of metastatic OC, and to investigate the regulatory mechanisms that promote aggressive properties during OC progression. MATERIALS AND METHODS: Expression of SLC6A12 mRNA was determined by reverse-transcription quantitative polymerase chain reaction (RT-qPCR), and DNA methylation status of its promoter CpGs was detected by quantitative methylation-specific PCR. The metastatic potential of SLC6A12 was evaluated by in vitro migration/invasion transwell assays. Gene expression and DNA methylation of SLC6A12 and clinical outcomes were further investigated from publicly available databases from curatedOvarianData and The Cancer Genome Atlas. RESULTS: SLC6A12 expression was 8.1-14.0-fold upregulated and its DNA methylation of promoter CpG sites was 41-62% decreased in tumor metastases. After treatment with DNA methyltransferase inhibitor and/or histone deacetylase inhibitor, the expression of SLC6A12 was profoundly enhanced (~8.0-fold), strongly supporting DNA methylation-dependent epigenetic regulation of SLC6A12. Overexpression of SLC6A12 led to increased migration and invasion of ovarian carcinoma cells in vitro, approximately 2.0-fold and 3.3-fold, respectively. The meta-analysis showed that high expression of SLC6A12 was significantly associated with poor overall survival [hazard ratio (HR)=1.07, p value=0.016] and that low DNA methylation levels of SLC6A12 at specific promoter CpG site negatively affected patient survival. CONCLUSION: Our findings provide novel evidence for the biological and clinical significance of SLC6A12 as a metastasis-promoting gene.


Assuntos
Proteínas de Transporte/metabolismo , Ilhas de CpG , Metilação de DNA , Neoplasias Ovarianas/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Animais , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Ensaios de Migração Celular , Progressão da Doença , Epigênese Genética , Feminino , Proteínas da Membrana Plasmática de Transporte de GABA , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Invasividade Neoplásica , Transplante de Neoplasias , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/patologia , Reação em Cadeia da Polimerase , Prognóstico , Regulação para Cima
11.
Oncol Rep ; 36(1): 535-41, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27220283

RESUMO

Ovarian cancer (OC) metastasis has unique biological behavior and most commonly occurs via the transcoelomic route. Previously, we established a mouse xenograft model of human ovarian carcinoma and analyzed alterations in gene expression during metastasis. Among the genes that were differentially expressed more than 2-fold in the xenografts compared with the SK-OV-3 cells, we selected synaptotagmin-like protein 2 (SYTL2) and investigated the mechanisms regulating its expression and its gene function in OC. The mRNA expression of SYTL2 was significantly upregulated and the methylation of specific CpG sites within the SYTL2 promoter was decreased in the metastatic implants from the ovarian carcinoma xenografts compared to wild-type SK-OV-3 cells. Treatment with the demethylating agent 5-aza­2'-deoxycytidine and/or the histone deacetylase inhibitor Trichostatin A induced upregulation of SYTL2 in SK-OV-3 cells, implying that a DNA methylation-dependent epigenetic mechanism is involved in the regulation of SYTL2 expression. We also found that overexpression of SYTL2 promoted metastatic potential, including increased migration and invasiveness in the ovarian carcinoma cells. Furthermore, we utilized publicly available gene expression data to confirm the correlation between SYTL2 expression and poor prognosis in serous-type OC patients. Our findings provide novel evidence for the direct association of SYTL2 with the metastatic potential of ovarian carcinoma cells and its influence on metastatic recurrence of OC.


Assuntos
Proteínas de Membrana/genética , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Animais , Carcinoma/genética , Carcinoma/patologia , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Ilhas de CpG/genética , Metilação de DNA/genética , Epigênese Genética/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Nus , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética
12.
PLoS One ; 11(4): e0153156, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27058954

RESUMO

To identify epigenetically regulated genes involved in the pathogenesis of Alzheimer's disease (AD) we analyzed global mRNA expression and methylation profiles in amyloid precursor protein (APP)-Swedish mutant-expressing AD model cells, H4-sw and selected heme oxygenase-1 (HMOX1), which is associated with pathological features of AD such as neurofibrillary tangles and senile plaques. We examined the epigenetic regulatory mechanism of HMOX1 and its application as a diagnostic and prognostic biomarker for AD. Our results show that HMOX1 mRNA and protein expression was approximately 12.2-fold and 7.9-fold increased in H4-sw cells, respectively. Increased HMOX1 expression was also detected in the brain, particularly the hippocampus, of AD model transgenic mice. However, the methylation of specific CpG sites within its promoter, particularly at CpG located -374 was significantly decreased in H4-sw cells. Treatment of neuroglioma cells with the demethylating agent 5-aza-2'-deoxycytidine resulted in reduced methylation of HMOX1 promoter accompanied by enhanced HMOX1 expression strongly supporting DNA methylation-dependent transcriptional regulation of HMOX1. Toxic Aß-induced aberrant hypomethylation of HMOX1 at -374 promoter CpG site was correlated with increased HMOX1 expression. In addition to neuroglioma cells, we also found Aß-induced epigenetic regulation of HMOX1 in human T lymphocyte Jurkat cells. We evaluated DNA methylation status of HMOX1 at -374 promoter CpG site in blood samples from AD patients, patients with mild cognitive impairment (MCI), and control individuals using quantitative methylation-specific polymerase chain reaction. We observed lower methylation of HMOX1 at the -374 promoter CpG site in AD patients compared to MCI and control individuals, and a correlation between Mini-Mental State Examination score and demethylation level. Receiver operating characteristics analysis revealed good discrimination of AD patients from MCI patients and control individuals. Our findings suggest that the methylation status of HMOX1 at a specific promoter CpG site is related to AD progression.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Heme Oxigenase-1/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/psicologia , Precursor de Proteína beta-Amiloide/genética , Animais , Estudos de Casos e Controles , Linhagem Celular , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/psicologia , Ilhas de CpG , Metilação de DNA/genética , Progressão da Doença , Epigênese Genética , Feminino , Marcadores Genéticos , Heme Oxigenase-1/metabolismo , Humanos , Células Jurkat , Masculino , Entrevista Psiquiátrica Padronizada , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Yonsei Med J ; 55(6): 1656-63, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25323905

RESUMO

PURPOSE: Both genetic and epigenetic alterations can lead to abnormal expression of metastasis-regulating genes in tumor cells. Recent studies suggest that aberrant epigenetic alterations, followed by differential gene expression, leads to an aggressive cancer cell phenotype. We examined epigenetically regulated genes that are involved in ovarian cancer metastasis. MATERIALS AND METHODS: We developed SK-OV-3 human ovarian carcinoma cell xenografts in mice. We compared the mRNA expression and DNA methylation profiles of metastatic tissues to those of the original SK-OV-3 cell line. RESULTS: Metastatic implants showed increased mRNA expression of the carbonic anhydrase 9 (CA9) gene and hypomethylation at CpG sites in the CA9 promoter. Treatment of wild-type SK-OV-3 cells with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine reduced methylation of the CA9 promoter and increased CA9 mRNA expression. Eight CpGs, which were located at positions -197, -74, -19, -6, +4, +13, +40, and +86, relative to the transcription start site, were hypomethylated in metastatic tumor implants, compared to that of wild-type SK-OV-3. Overexpression of CA9 induced an aggressive phenotype, including increased invasiveness and migration, in SK-OV-3 cells. CONCLUSION: Alterations in the DNA methylation profile of the CA9 promoter were correlated with a more aggressive phenotype in ovarian cancer cells.


Assuntos
Azacitidina/análogos & derivados , Metilação de DNA , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Metástase Neoplásica/patologia , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Ovarianas/metabolismo , Animais , Azacitidina/farmacologia , Anidrases Carbônicas/metabolismo , Carcinoma Epitelial do Ovário , Decitabina , Feminino , Humanos , Camundongos , Invasividade Neoplásica/genética , Metástase Neoplásica/genética , Neoplasias Experimentais , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Fenótipo , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo
14.
Yonsei Med J ; 55(5): 1206-13, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25048476

RESUMO

PURPOSE: Recent discoveries suggest that aberrant DNA methylation provides cancer cells with advanced metastatic properties. However, the precise regulatory mechanisms controlling metastasis genes and their role in metastatic transformation are largely unknown. To address epigenetically-regulated gene products involved in ovarian cancer metastasis, we examined the mechanisms regulating mucin 13 (MUC13) expression and its influence on aggressive behaviors of ovarian malignancies. MATERIALS AND METHODS: We injected SK-OV-3 ovarian cancer cells peritoneally into nude mice to mimic human ovarian tumor metastasis. Overexpression of MUC13 mRNA was detected in metastatic implants from the xenografts by expression microarray analysis and quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The DNA methylation status within the MUC13 promoter region was determined using bisulfite sequencing PCR and quantitative methylation-specific PCR. We evaluated the effects of exogenous MUC13 on cell invasion and migration using in vitro transwell assays. RESULTS: MUC13 mRNA expression was up-regulated, and methylation of specific CpG sites within the promoter was reduced in the metastatic implants relative to those in wild-type SK-OV-3 cells. Addition of a DNA methyltransferase inhibitor to SK-OV-3 cells induced MUC13 expression, thereby implying epigenetic regulation of MUC13 by promoter methylation. MUC13 overexpression increased migration and invasiveness, compared to control cells, suggesting aberrant up-regulation of MUC13 is strongly associated with progression of aggressive behaviors in ovarian cancer. CONCLUSION: We provide novel evidence for epigenetic regulation of MUC13 in ovarian cancer. We suggest that the DNA methylation status within the MUC13 promoter region may be a potential biomarker of aggressive behavior in ovarian cancer.


Assuntos
Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Mucinas/genética , Neoplasias Ovarianas/metabolismo , Animais , Linhagem Celular Tumoral , Epigênese Genética , Feminino , Xenoenxertos/metabolismo , Humanos , Camundongos , Camundongos Nus , Mucinas/metabolismo , Mucinas/fisiologia , Invasividade Neoplásica/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , RNA Mensageiro/metabolismo
15.
PLoS One ; 9(6): e99047, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24964199

RESUMO

Swedish double mutation (KM670/671NL) of amyloid precursor protein (APP) is reported to increase toxic amyloid ß (Aß) production via aberrant cleavage at the ß-secretase site and thereby cause early-onset Alzheimer's disease (AD). However, the underlying molecular mechanisms leading to AD pathogenesis remains largely unknown. Previously, our transcriptome sequence analyses revealed global expressional modifications of over 600 genes in APP-Swedish mutant-expressing H4 (H4-sw) cells compared to wild type H4 cells. Insulin-like growth factor binding protein 3 (IGFBP3) is one gene that showed significantly decreased mRNA expression in H4-sw cells. In this study, we investigated the functional role of IGFBP3 in AD pathogenesis and elucidated the mechanisms regulating its expression. We observed decreased IGFBP3 expression in the H4-sw cell line as well as the hippocampus of AD model transgenic mice. Treatment with exogenous IGFBP3 protein inhibited Aß1-42- induced cell death and caspase-3 activity, whereas siRNA-mediated suppression of IGFBP3 expression induced cell death and caspase-3 cleavage. In primary hippocampal neurons, administration of IGFBP3 protein blocked apoptotic cell death due to Aß1-42 toxicity. These data implicate a protective role for IGFBP3 against Aß1-42-mediated apoptosis. Next, we investigated the regulatory mechanisms of IGFBP3 expression in AD pathogenesis. We observed abnormal IGFBP3 hypermethylation within the promoter CpG island in H4-sw cells. Treatment with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine restored IGFBP3 expression at both the mRNA and protein levels. Chronic exposure to Aß1-42 induced IGFBP3 hypermethylation at CpGs, particularly at loci -164 and -173, and subsequently suppressed IGFBP3 expression. Therefore, we demonstrate that expression of anti-apoptotic IGFBP3 is regulated by epigenetic DNA methylation, suggesting a mechanism that contributes to AD pathogenesis.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Caspase 3/metabolismo , Sobrevivência Celular/genética , Ilhas de CpG , Metilação de DNA , Epigênese Genética , Regulação da Expressão Gênica , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/química , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Camundongos , Camundongos Transgênicos , Ratos
16.
Oncol Rep ; 32(2): 815-20, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24920423

RESUMO

The metastatic properties of cancer cells result from genetic and epigenetic alterations that lead to the abnormal expression of key genes regulating tumor phenotypes. Recent discoveries suggest that aberrant DNA methylation provides cancer cells with advanced metastatic properties; however, the precise regulatory mechanisms controlling metastasis-associated genes and their roles in metastatic transformation are largely unknown. We injected SK-OV-3 human ovarian cancer cells into the perineum of nude mice to generate a mouse model that mimics human ovarian cancer metastasis. We analyzed the mRNA expression and DNA methylation profiles in metastasized tumor tissues in the mice. The pro-oncogenic anterior gradient 2 (AGR2) gene showed increased mRNA expression and hypomethylation at CpG sites in its promoter region in the metastatic tumor tissues compared with the cultured SK-OV-3 cells. We identified crucial cytosine residues at CpG sites in the AGR2 promoter region. Treatment with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine reduced the level of CpG methylation in the AGR2 promoter and increased the level of AGR2 expression. Next, we explored the functional role of AGR2 in the metastatic transformation of SK-OV-3 cells. SK-OV-3 cells overexpressing AGR2 showed increased migratory and invasive activity. Our results indicate that DNA methylation within the AGR2 promoter modulates more aggressive cancer cell phenotypes.


Assuntos
Metilação de DNA , Metástase Neoplásica/patologia , Neoplasias Ovarianas/patologia , Proteínas/genética , Animais , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Linhagem Celular Tumoral , Decitabina , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Mucoproteínas , Metástase Neoplásica/genética , Neoplasias Experimentais , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Oncogênicas , Neoplasias Ovarianas/genética , Regiões Promotoras Genéticas
17.
Oncol Rep ; 31(5): 2139-46, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24676393

RESUMO

A lack of reliable biomarkers for the early detection and risk of metastatic recurrences makes ovarian cancer the most lethal gynecological cancer. To understand the molecular mechanisms involved in ovarian cancer metastasis in vivo, we analyzed the transcriptional expression pattern in metastatic implants of human ovarian carcinoma xenografts in mice. The expression of 937 genes was significantly different, by at least 2-fold, in the xenografts compared with that in SK-OV-3 cells. We investigated the mechanisms that regulate the expression of one of the profoundly upregulated genes, interferon-induced transmembrane protein 1 (IFITM1), in the metastatic implants. Specific CpG sites within the IFITM1 promoter were hypomethylated in the metastatic implants relative to those in the wild-type SK-OV-3 cells. Treating wild-type SK-OV-3 cells with the demethylating agent 5-aza-2'-deoxycytidine enhanced IFITM1 expression in a dose-dependent manner, implying transcriptional regulation by promoter methylation. We also found that IFITM1 overexpression caused increased migration and invasiveness in SK-OV-3 cells. Our results demonstrate that IFITM1 could be a novel metastasis-promoting gene that enhances the metastatic phenotype in ovarian cancer via epigenetic transcriptional regulation. Our findings also suggest that the status of DNA methylation within the IFITM1 promoter region could be a biomarker indicating metastatic progression in ovarian cancer.


Assuntos
Antígenos de Diferenciação/genética , Metilação de DNA/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Animais , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Biomarcadores Tumorais , Linhagem Celular Tumoral , Decitabina , Feminino , Humanos , Injeções Intraperitoneais , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica/genética , Ovário/patologia , Regiões Promotoras Genéticas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
J Pediatr Gastroenterol Nutr ; 58(2): 245-51, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24121150

RESUMO

OBJECTIVE: The aim of the present study was to examine the expression of FOXP3, interleukin (IL)-10, transforming growth factor (TGF)-ß1, IL-17A, and T helper 17 (TH17) cells/FOXP3+ regulatory T (Treg) cells balance in the gastric mucosa of children with Helicobacter pylori infection, in relation to the gastric histopathology. METHODS: Antral mucosal biopsies were obtained from 20 children with H pylori(+) gastritis and 20 age- and sex-matched normal controls. Histopathology was assessed by the updated Sydney classification. Gene expression of FOXP3, IL-10, and TGF-ß1 was analyzed by quantitative real-time polymerase chain reaction. Immunohistochemical staining for FOXP3+ Treg and TH17 cells was performed. RESULTS: The gene expression levels of FOXP3, TGF-ß1, and IL-10 messenger RNA (mRNA) and the number of FOXP3+ Treg were significantly higher in the H pylori(+) gastritis group than in the control group (P < 0.01). FOXP3 mRNA levels were correlated positively with TGF-ß1 and IL-10 mRNA levels in the H pylori(+) gastritis group (P < 0.05). Furthermore, FOXP3 mRNA levels were correlated positively with the bacterial density, infiltration of polymorphonuclear cells, and mononuclear cells in the H pylori(+) gastritis group (P < 0.05). The number of TH17 cells was significantly higher in the H pylori(+) gastritis group than in the control group (P < 0.05). In addition, the number of TH17 cells was correlated negatively with the bacterial density and positively with the inflammatory scores of polymorphonuclear cells and mononuclear cells in the H pylori(+) gastritis group (P < 0.05). A negative correlation between the TH17 cells/FOXP3+ Treg ratio and the bacterial density was demonstrated in the H pylori(+) gastritis group (P < 0.05). CONCLUSIONS: This study suggested that a TH17/Treg balance toward a Treg-biased response favors the persistence of bacteria, causing chronic active gastritis.


Assuntos
Mucosa Gástrica/imunologia , Gastrite/imunologia , Infecções por Helicobacter/imunologia , Helicobacter pylori/crescimento & desenvolvimento , Linfócitos T Reguladores/metabolismo , Células Th17/metabolismo , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Gastrite/metabolismo , Gastrite/microbiologia , Gastrite/patologia , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Humanos , Inflamação/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Leucócitos Mononucleares/metabolismo , Masculino , RNA Mensageiro/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
19.
Biochem Biophys Res Commun ; 430(2): 476-81, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23237802

RESUMO

We previously showed that all-trans retinoic acid (atRA) decreased nitric oxide (NO) production through Akt-mediated decreased phosphorylation of endothelial NO synthase at serine 1179 (eNOS-Ser(1179)) in bovine aortic endothelial cells (BAEC). Since protein phosphatase 2A (PP2A) was also reported to decrease eNOS-Ser(1179) phosphorylation, we investigated using BAEC whether PP2A mediates atRA-induced eNOS-Ser(1179) dephosphorylation and subsequent decreased NO production. Treatment with okadaic acid (5nM), a selective PP2A inhibitor, or ectopic expression of small interference RNA (siRNA) of PP2A catalytic subunit α (PP2A Cα) significantly increased eNOS-Ser(1179) phosphorylation and NO production. Each treatment also significantly reversed atRA-induced observed effects, suggesting a role for PP2A. We also found that atRA significantly increased cellular PP2A activity. However, Western blot analysis revealed that atRA did not increase the expression of PP2A Cα, although it significantly increased the level of B56α of PP2A regulatory B subunit (PP2A B56α), but not PP2A B55α and PP2A B56δ. Real-time PCR assay confirmed a significant increase in PP2A B56α mRNA expression in atRA-treated cells. Ectopic expression of siRNA of PP2A B56α significantly reversed atRA-induced inhibitory effects on eNOS-Ser(1179) phosphorylation and NO production, suggesting a role for PP2A B56α. Our study demonstrates for the first time that atRA decreases eNOS-Ser(1179) phosphorylation and NO release at least in part by increasing PP2A B56α-mediated PP2A activity in BAEC.


Assuntos
Endotélio Vascular/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/biossíntese , Proteína Fosfatase 2/metabolismo , Tretinoína/farmacologia , Animais , Aorta/citologia , Bovinos , Células Cultivadas , Endotélio Vascular/enzimologia , Óxido Nítrico Sintase Tipo III/genética , Fosforilação/efeitos dos fármacos , Proteína Fosfatase 2/genética , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Serina/genética , Serina/metabolismo
20.
Biology (Basel) ; 1(1): 43-57, 2012 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24832046

RESUMO

Development of the atherosclerotic plaque involves a complex interplay between a number of cell types and an extensive inter-cellular communication via cell bound as well as soluble mediators. The family of tribbles proteins has recently been identified as novel controllers of pro-inflammatory signal transduction. The objective of this study was to address the expression pattern of all three tribbles proteins in atherosclerotic plaques from a mouse model of atherosclerosis. Each tribbles were expressed in vascular smooth muscle cells, endothelial cells as well as in resident macrophages of mouse atherosclerotic plaques. The role of IL-1 mediated inflammatory events in controlling tribbles expression was also addressed by inducing experimental atherosclerosis in ApoE-/-IL1R1-/- (double knockout) mice. Immunohistochemical analysis of these mice showed a selective decrease in the percentage of trb-1 expressing macrophages, compared to the ApoE-/- cohort (14.7% ± 1.55 vs. 26.3% ± 1.19). The biological significance of this finding was verified in vitro where overexpression of trb-1 in macrophages led to a significant attenuation (~70%) of IL-6 production as well as a suppressed IL-12 expression induced by a proinflammatory stimulus. In this in vitro setting, expression of truncated trb-1 mutants suggests that the kinase domain of this protein is sufficient to exert this inhibitory action.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA