Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38890994

RESUMO

We analyzed antimicrobial resistance and virulence traits in multidrug-resistant (MDR) E. coli isolates obtained from imported shrimp using whole-genome sequences (WGSs). Antibiotic resistance profiles were determined phenotypically. WGSs identified key characteristics, including their multilocus sequence type (MLST), serotype, virulence factors, antibiotic resistance genes, and mobile elements. Most of the isolates exhibited resistance to gentamicin, streptomycin, ampicillin, chloramphenicol, nalidixic acid, ciprofloxacin, tetracycline, and trimethoprim/sulfamethoxazole. Multilocus sequence type (MLST), serotype, average nucleotide identity (ANI), and pangenome analysis showed high genomic similarity among isolates, except for EC15 and ECV01. The EC119 plasmid contained a variety of efflux pump genes, including those encoding the acid resistance transcriptional activators (gadE, gadW, and gadX), resistance-nodulation-division-type efflux pumps (mdtE and mdtF), and a metabolite, H1 symporter (MHS) family major facilitator superfamily transporter (MNZ41_23075). Virulence genes displayed diversity, particularly EC15, whose plasmids carried genes for adherence (faeA and faeC-I), invasion (ipaH and virB), and capsule (caf1A and caf1M). This comprehensive analysis illuminates antimicrobial resistance, virulence, and plasmid dynamics in E. coli from imported shrimp and has profound implications for public health, emphasizing the need for continued surveillance and research into the evolution of these important bacterial pathogens.

2.
Microb Pathog ; 193: 106766, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38942248

RESUMO

Campylobacter jejuni is one of the major causes of bacterial gastrointestinal disease in humans worldwide. This foodborne pathogen colonizes the intestinal tracts of chickens, and consumption of chicken and poultry products is identified as a common route of transmission. We analyzed two C. jejuni strains after oral challenge with 105 CFU/ml of C. jejuni per chick; one strain was a robust colonizer (A74/C) and the other a poor colonizer (A74/O). We also found extensive phenotypic differences in growth rate, biofilm production, and in vitro adherence, invasion, intracellular survival, and transcytosis. Strains A74/C and A74/O were genotypically similar with respect to their whole genome alignment, core genome, and ribosomal MLST, MLST, flaA, porA, and PFGE typing. The global proteomes of the two congenic strains were quantitatively analyzed by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and 618 and 453 proteins were identified from A74/C and A74/O isolates, respectively. Cluster of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that carbon metabolism and motility proteins were distinctively overexpressed in strain A74/C. The robust colonizer also exhibited a unique proteome profile characterized by significantly increased expression of proteins linked to adhesion, invasion, chemotaxis, energy, protein synthesis, heat shock proteins, iron regulation, two-component regulatory systems, and multidrug efflux pump. Our study underlines phenotypic, genotypic, and proteomic variations of the poor and robust colonizing C. jejuni strains, suggesting that several factors may contribute to mediating the different colonization potentials of the isogenic isolates.

3.
Foods ; 13(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38928770

RESUMO

Campylobacter jejuni is the foodborne pathogen causing most gastrointestinal infections. Understanding its ability to form biofilms is crucial for devising effective control strategies in food processing environments. In this study, we investigated the growth dynamics and biofilm formation of C. jejuni NCTC 11168 in various culture media, including chicken juice (CJ), brain heart infusion (BHI), and Mueller Hinton (MH) broth. Our results demonstrated that C. jejuni exhibited a higher growth rate and enhanced biofilm formation in CJ and in 1:1 mixtures of CJ with BHI or MH broth compared to these measures in BHI or MH broth alone. Electron microscopy unveiled distinct morphological attributes of late-stage biofilm cells in CJ, including the presence of elongated spiral-shaped cells, thinner stretched structures compared to regular cells, and extended thread-like structures within the biofilms. Proteomic analysis identified significant alterations in protein expression profiles in C. jejuni biofilms, with a predominance of downregulated proteins associated with vital functions like metabolism, energy production, and amino acid and protein biosynthesis. Additionally, a significant proportion of proteins linked to biofilm formation, virulence, and iron uptake were suppressed. This shift toward a predominantly coccoid morphology echoed the reduced energy demands of these biofilm communities. Our study unlocks valuable insights into C. jejuni's biofilm in CJ, demonstrating its adaptation and survival.

4.
Future Microbiol ; 19(8): 681-696, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38661712

RESUMO

Aim: The aim of this study was to probe the dynamics of Pseudomonas aeruginosa PA14 air-liquid interface (ALI) biofilms over time through global proteomic analysis. Materials & methods: P. aeruginosa PA14 ALI biofilm samples, collected over 48-144 h, underwent differential expression analysis to identify varying proteins at each time point. Results: A consistent set of 778 proteins was identified, with variable expression over time. Upregulated proteins were mainly linked to 'amino acid transport and metabolism'. Biofilm-related pathways, including cAMP/Vfr and QS, underwent significant changes. Flagella were more influential than pili, especially in early biofilm development. Proteins associated with virulence, transporters and iron showed differential expression throughout. Conclusion: The findings enhance our understanding of ALI biofilm development.


This study looks at how the bacteria Pseudomonas aeruginosa forms a community called a biofilm at the air­liquid interface (ALI), an important environment for bacterial growth. Biofilms at the ALI are resistant to external forces and contribute to antibiotic resistance. Over 48­144 h, we observed a noticeable increase in biofilm thickness. Our data suggested that the flagella, a sort of propeller of the bacterium, plays a crucial role, especially in the initial stages of ALI biofilm formation. Proteins associated with virulence, transporters and iron also showed their significance in ALI biofilms. These findings offer valuable insights into the protein changes and functions involved in P. aeruginosa ALI biofilms, improving our understanding of biofilm development.


Assuntos
Proteínas de Bactérias , Biofilmes , Proteômica , Pseudomonas aeruginosa , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Biofilmes/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Virulência , Proteoma/análise
5.
Microbiol Resour Announc ; 12(11): e0042923, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37850755

RESUMO

Non-O157 Shiga toxin-producing Escherichia coli (STEC) are recognized as an important group of bacterial enteropathogens. Here, we report the draft genome sequence of nine strains of non-O157 STEC isolated from ready-to-eat foods in Argentina. The whole-genome sequence data provide a better understanding of these isolates and will aid epidemiological investigation during outbreaks.

6.
J AOAC Int ; 106(6): 1574-1588, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37725340

RESUMO

BACKGROUND: Staphylococcus is a genus of Gram-positive bacteria, known to cause food poisoning and gastrointestinal illness in humans. Additionally, the emergence of methicillin-resistant S. aureus (MRSA) strains has caused a major health care burden worldwide. Cronobacter is a group of Gram-negative bacteria that can survive in extreme dry conditions. Cronobacter sakazakii is known to contaminate powdered infant formula and cause life-threatening infections in neonates. Vibrio is a genus of human-pathogenic Gram-negative bacteria that can cause foodborne illness by consuming undercooked or raw seafood. Vibrio parahaemolyticus can cause serious gastrointestinal disease in humans. Thus, rapid identification of Staphylococcus spp., Cronobacter spp., and Vibrio spp. is crucial for the source tracking of contaminated food, as well as to measure the transmission dynamics of these bacterial pathogens causing foodborne diseases and outbreaks. OBJECTIVE: This single-laboratory performance evaluation study used the VITEK MS system to evaluate the potential of MALDI-TOF MS technology for rapid identification of S. aureus-like, C. sakazakii-like, and V. parahaemolyticus-like isolates of public health importance. METHOD: A total of 226 isolates recovered from various food, environmental surveillance samples, and other sources were identified by bioMérieux VITEK 2 and VITEK MS systems as Staphylococcus spp., Cronobacter spp., and Vibrio spp. Five American Type Culture Collection (ATCC) reference Gram-positive and Gram-negative bacterial isolates were also tested to complete the study. In addition, for some Staphylococcus spp. isolates, whole genome sequencing (WGS) and DNA sequencing of 16S rRNA partial region were also performed for species identification. RESULTS: The VITEK MS system was able to provide species identification to all 96 isolates of Staphylococcus spp. and to all 29 isolates of Vibrio spp. examined with a high confidence value (99.9%). Similarly, species identification was observed for the majority of spots (245 of 303) for the 101 Cronobacter spp. isolates (∼82.0%) with a high confidence value (99.9%), and genus level identification was noticed for the rest of the Cronobacter spp. isolates (18.0%; 58 of the 303 spots) analyzed. Species identification data generated by VITEK 2 system were comparable to data obtained by the VITEK MS system. CONCLUSIONS: The VITEK MS system is a reliable high-throughput platform that can rapidly identify Staphylococcus, Vibrio, and Cronobacter to the genus level, as well as S. aureus, C. sakazakii, V. parahaemolyticus, and other closely related foodborne isolates and bacterial isolates from additional sources, in most cases. HIGHLIGHTS: The VITEK MS system can be used in the rapid genus and species identification of human-pathogenic Staphylococcus spp., Cronobacter spp., and Vibrio spp. isolates.


Assuntos
Cronobacter sakazakii , Cronobacter , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Vibrio parahaemolyticus , Lactente , Recém-Nascido , Humanos , Cronobacter sakazakii/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Staphylococcus aureus/genética , Saúde Pública , Vibrio parahaemolyticus/genética , RNA Ribossômico 16S/genética , Bactérias Gram-Negativas
7.
Nanomaterials (Basel) ; 13(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37570524

RESUMO

Spherical copper oxide nanoparticles (CuO/Cu2O NPs) were synthesized by pulsed laser ablation in liquids (PLAL). The copper target was totally submerged in deionized (DI) water and irradiated by an infrared laser beam at 1064 nm for 30 min. The NPs were then characterized by dynamic light scattering (DLS) and atomic emission spectroscopy (AES) to determine their size distribution and concentration, respectively. The phases of copper oxide were identified by Raman spectroscopy. Then, the antibacterial activity of CuO/Cu2O NPs against foodborne pathogens, such as Salmonella enterica subsp. enterica serotype Typhimurium DT7, Escherichia coli O157:H7, Shigella sonnei ATCC 9290, Yersinia enterocolitica ATCC 27729, Vibrio parahaemolyticus ATCC 49398, Bacillus cereus ATCC 11778, and Listeria monocytogenes EGD, was tested. At a 3 ppm concentration, the CuO/Cu2O NPs exhibited an outstanding antimicrobial effect by killing most bacteria after 5 h incubation at 25 °C. Field emission scanning electron microscope (FESEM) confirmed that the CuO/Cu2O NPs destructed the bacterial cell wall.

8.
Microbiol Resour Announc ; 12(4): e0111622, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-36856408

RESUMO

We report the draft genome sequences of 14 fluoroquinolone-resistant Escherichia coli strains that were isolated from imported shrimp. All isolates contained multiple point mutations in the quinolone resistance-determining regions (QRDRs) and non-QRDRs of gyrA, parC, and parE genes. The data improve the understanding of fluoroquinolone resistance and indicate resistance mechanisms.

9.
Pathogens ; 12(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36839624

RESUMO

Bacteria can grow either as planktonic cells or as communities within biofilms [...].

10.
Cells ; 11(21)2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36359886

RESUMO

Staphylococcus epidermidis is a leading cause of biofilm-associated infections on implanted medical devices. During the treatment of an infection, bacterial cells inside biofilms may be exposed to sublethal concentrations of the antimicrobial agents. In the present study, the effect of subinhibitory concentrations of tigecycline (TC) on biofilms formed by S. epidermidis strain RP62A was investigated using a quantitative global proteomic technique. Sublethal concentrations of TC [1/8 (T1) and 1/4 minimum inhibitory concentration (MIC) (T2)] promoted biofilm production in strain RP62A, but 1/2 MIC TC (T3) significantly inhibited biofilm production. Overall, 413, 429, and 518 proteins were differentially expressed in biofilms grown with 1/8 (T1), 1/4 (T2), and 1/2 (T3) MIC of TC, respectively. As the TC concentration increased, the number of induced proteins in each Cluster of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway increased. The TC concentration dependence of the proteome response highlights the diverse mechanisms of adaptive responses in strain RP62A biofilms. In both COG and KEGG functional analyses, most upregulated proteins belong to the metabolism pathway, suggesting that it may play an important role in the defense of strain RP62A biofilm cells against TC stress. Sub-MIC TC treatment of strain RP62A biofilms led to significant changes of protein expression related to biofilm formation, antimicrobial resistance, virulence, quorum sensing, ABC transporters, protein export, purine/pyrimidine biosynthesis, ribosomes, and essential proteins. Interestingly, in addition to tetracycline resistance, proteins involved in resistance of various antibiotics, including aminoglycosides, antimicrobial peptides, ß-lactams, erythromycin, fluoroquinolones, fusidic acid, glycopeptides, lipopeptides, mupirocin, rifampicin and trimethoprim were differentially expressed. Our study demonstrates that global protein expression profiling of biofilm cells to antibiotic pressure may improve our understanding of the mechanisms of antibiotic resistance in biofilms.


Assuntos
Proteoma , Staphylococcus epidermidis , Staphylococcus epidermidis/genética , Tigeciclina/farmacologia , Tigeciclina/metabolismo , Proteoma/metabolismo , Proteômica , Biofilmes , Antibacterianos/farmacologia
11.
Microbiol Resour Announc ; 11(4): e0000322, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35289649

RESUMO

We report here the draft genome sequences of 16 fluoroquinolone-resistant extraintestinal Escherichia coli isolates from human patients. These isolates had high MICs (32 to 256 µg/mL) for ciprofloxacin and contained point mutations in the quinolone resistance-determining region (QRDR) of both gyrA and parC that confer resistance to fluoroquinolone. The whole-genome sequence data provide a better understanding of the fluoroquinolone resistance mechanisms in these isolates and would be beneficial in source tracking these pathogens during pandemic outbreaks.

12.
Microbiol Resour Announc ; 11(2): e0118521, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35084219

RESUMO

We present the draft genome sequences of nine hospital-associated methicillin-susceptible Staphylococcus aureus (HA-MSSA) strains. All strains were from Minnesota (eight from blood and one from bone), harbored various virulence genes, and showed diverse multilocus sequence typing and spa types.

13.
Microbiol Resour Announc ; 11(2): e0118621, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35084220

RESUMO

Infections caused by hospital-associated methicillin-resistant Staphylococcus aureus (HA-MRSA) strains have higher morbidity and mortality rates and require longer hospital stays than do those caused by hospital-associated methicillin-sensitive Staphylococcus aureus strains. To gain insight into their genomic makeup, antimicrobial resistance, biofilm formation, and virulence potentials, here we present the draft whole-genome sequences of 27 HA-MRSA strains isolated in Minnesota.

14.
Microbiol Resour Announc ; 11(2): e0119021, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35084222

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is a pathogenic bacterium responsible for difficult-to-treat staphylococcal infections due to multidrug resistance. Twelve Panton-Valentine leucocidin (PVL)-positive and multidrug-resistant clinical MRSA isolates from hospitals in Pakistan were sequenced and annotated to investigate genetic markers associated with antimicrobial resistance, virulence, and biofilm formation.

15.
Microbiol Resour Announc ; 10(46): e0092921, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34792385

RESUMO

Here, we report the draft genome sequences of eight community-associated methicillin-resistant Staphylococcus aureus strains that were resistant to cefoxitin, ampicillin, and erythromycin. Three isolates, i.e., CAR1, CAR2, and CAR8, were sequence type 8 (ST8) with staphylococcal cassette chromosome mec (SCCmec) type IVa and were Panton-Valentine leukocidin (PVL) positive, which has been known as a predominant clone in the United States.

16.
Pathogens ; 10(8)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34451382

RESUMO

In this study, we compared pulsed-field gel electrophoretic (PFGE), multilocus sequence typing (MLST), Staphylococcal cassette chromosome mec (SCCmec), spa typing, and virulence gene profiles of 19 Panton-Valentine leucocidin (PVL)-positive, multidrug-, and methicillin-resistant clinical Staphylococcus aureus (MRSA) isolates obtained from a hospital intensive care unit in Pakistan. The isolates exhibited 10 pulsotypes, contained eight adhesin genes (bbp, clfA, clfB, cna, fnbA, fnbB, map-eap, and spa), 10 toxin genes (hla, hlb, hld, hlg, pvl, sed, see, seg, seh, and tst), and two other virulence genes (cfb, v8) that were commonly present in all isolates. The spa-typing indicated seven known spa types (t030, t064, t138, t314, t987, t1509, and t5414) and three novel spa types. MLST analysis indicated eight ST types (ST8, ST15, ST30, ST239, ST291, ST503, ST772, and ST1413). All isolates belonged to the agr group 1. Most of the isolates possessed SCCmec type III, but some isolates had it in combination with types SCCmec IV and V. The presence of multidrug-resistant MRSA isolates in Pakistan indicates poor hygienic conditions, overuse of antibiotics, and a lack of rational antibiotic therapy that have led to the evolution and development of hypervirulent MRSA clones. The study warrants development of a robust epidemiological screening program and adoption of effective measures to stop their spread in hospitals and the community.

17.
Antibiotics (Basel) ; 10(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206280

RESUMO

Pseudomonas aeruginosa is the most common Gram-negative pathogen causing nosocomial multidrug resistant infections. It is a good biofilm producer and has the potential for contaminating medical devices. Despite the widespread use of antibacterial-impregnated catheters, little is known about the impacts of antibacterial coating on the pathogenesis of P. aeruginosa. In this study, we investigated the adaptive resistance potential of P. aeruginosa strain PAO1 in response to continuous antibiotic exposure from clindamycin/rifampicin-impregnated catheters (CR-IC). During exposure for 144 h to clindamycin and rifampicin released from CR-IC, strain PAO1 formed biofilms featuring elongated and swollen cells. There were 545 and 372 differentially expressed proteins (DEPs) identified in the planktonic and biofilm cells, respectively, by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Both Cluster of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that the planktonic cells responded to the released antibiotics more actively than the biofilm cells, with metabolism and ribosomal biosynthesis-associated proteins being significantly over-expressed. Exposure to CR-IC increased the invasion capability of P. aeruginosa for Hela cells and upregulated the expression of certain groups of virulence proteins in both planktonic and biofilm cells, including the outer membrane associated (flagella, type IV pili and type III secretion system) and extracellular (pyoverdine) virulence proteins. Continuous exposure of P. aeruginosa to CR-IC also induced the overexpression of antibiotic resistance proteins, including porins, efflux pumps, translation and transcription proteins. However, these upregulations did not change phenotypic minimum inhibitory concentration (MIC) during the experimental timeframe. The concerning association between CR-IC and overexpression of virulence factors in P. aeruginosa suggests the need for additional investigation to determine if it results in adverse clinical outcomes.

18.
J Food Prot ; 84(10): 1704-1712, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33878155

RESUMO

ABSTRACT: In this study, we compared the efficiency of culture-based methods with or without membrane filtration, real-time PCR, and digital droplet PCR (ddPCR) for the detection of Campylobacter in fresh produce. Alfalfa sprouts, clover sprouts, coleslaw, and lettuce salad spiked with Campylobacter jejuni were enriched in Bolton broth for 48 h, and enrichment cultures were either directly inoculated onto modified charcoal-cefoperazone-deoxycholate agar or applied on membrane filters placed on the surface of plating media. In parallel, 2-mL Bolton broth cultures were taken to extract DNA for real-time PCR and ddPCR assays and bacterial community analysis. A developed primer set for ddPCR and real-time PCR was evaluated for its inclusivity and exclusivity using pure culture of C. jejuni and non-C. jejuni strains, respectively. In pure culture, the primer set reacted only with C. jejuni strains and showed negative reaction to non-C. jejuni strains. There was no significant difference (P > 0.05) in the detection efficiency of positive Campylobacter isolates from coleslaw and lettuce salad using four detection methods. However, for sprout samples, the detection efficiency of the culture method was significantly (P < 0.05) lower than those of the two PCR assays and the filtration method. The analysis also revealed the presence of Pseudomonas and Acinetobacter as the most prevalent competing microbiota in enriched culture and only Acinetobacter on agar plates in the selective culture step.


Assuntos
Campylobacter jejuni , Campylobacter , Microbiota , Animais , Campylobacter jejuni/genética , Galinhas , Meios de Cultura , Reação em Cadeia da Polimerase em Tempo Real
19.
Microbiol Resour Announc ; 9(41)2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033121

RESUMO

Here, we report the draft genome sequences of robust (A74/C_24-3) and poor (A74/O_2-2) chicken-colonizing Campylobacter jejuni isolates. Whole-genome sequence analyses of these isolates will be helpful in facilitating further studies to identify genetic factors used in chicken colonization.

20.
Microorganisms ; 8(5)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32369929

RESUMO

Coagulase-negative staphylococci (CoNS) are an important group of opportunistic pathogenic microorganisms that cause infections in hospital settings and are generally resistant to many antimicrobial agents. We report on phenotypic and genotypic virulence characteristics of a select group of clinical, mecA-positive (encoding penicillin-binding protein 2a) CoNS isolates. All CoNS were resistant to two or more antimicrobials with S. epidermidis strain 214EP, showing resistance to fifteen of the sixteen antimicrobial agents tested. Aminoglycoside-resistance genes were the ones most commonly detected. The presence of megaplasmids containing both horizontal gene transfer and antimicrobial resistance genetic determinants indicates that CoNS may disseminate antibiotic resistance to other bacteria. Staphylococcus sciuri species produced six virulence enzymes, including a DNase, gelatinase, lipase, phosphatase, and protease that are suspected to degrade tissues into nutrients for bacterial growth and contribute to the pathogenicity of CoNS. The PCR assay for the detection of biofilm-associated genes found the eno (encoding laminin-binding protein) gene in all isolates. Measurement of their biofilm-forming ability and Spearman's rank correlation coefficient analyses revealed that the results of crystal violet (CV) and extracellular polymeric substances (EPS) assays were significantly correlated (ρ = 0.9153, P = 3.612e-12). The presence of virulence factors, biofilm-formation capability, extracellular enzymes, multidrug resistance, and gene transfer markers in mecA-positive CoNS clinical strains used in this study makes them powerful opportunistic pathogens. The study also warrants a careful evaluation of nosocomial infections caused by CoNS and may be useful in studying the mechanism of virulence and factors associated with their pathogenicity in vivo and developing effective strategies for mitigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA