Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(1): 113627, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38157296

RESUMO

Vascular morphogenesis requires a delicate gradient of Notch signaling controlled, in part, by the distribution of ligands (Dll4 and Jagged1). How Jagged1 (JAG1) expression is compartmentalized in the vascular plexus remains unclear. Here, we show that Jag1 mRNA is a direct target of zinc-finger protein 36 (ZFP36), an RNA-binding protein involved in mRNA decay that we find robustly induced by vascular endothelial growth factor (VEGF). Endothelial cells lacking ZFP36 display high levels of JAG1 and increase angiogenic sprouting in vitro. Furthermore, mice lacking Zfp36 in endothelial cells display mispatterned and increased levels of JAG1 in the developing retinal vascular plexus. Abnormal levels of JAG1 at the sprouting front alters NOTCH1 signaling, increasing the number of tip cells, a phenotype that is rescued by imposing haploinsufficiency of Jag1. Our findings reveal an important feedforward loop whereby VEGF stimulates ZFP36, consequently suppressing Jag1 to enable adequate levels of Notch signaling during sprouting angiogenesis.


Assuntos
Proteínas de Membrana , Fator A de Crescimento do Endotélio Vascular , Animais , Camundongos , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proliferação de Células , Células Endoteliais/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Neovascularização Fisiológica , Receptores Notch/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Elife ; 122023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36971339

RESUMO

Environmental cues, such as physical forces and heterotypic cell interactions play a critical role in cell function, yet their collective contributions to transcriptional changes are unclear. Focusing on human endothelial cells, we performed broad individual sample analysis to identify transcriptional drifts associated with environmental changes that were independent of genetic background. Global gene expression profiling by RNA sequencing and protein expression by liquid chromatography-mass spectrometry directed proteomics distinguished endothelial cells in vivo from genetically matched culture (in vitro) samples. Over 43% of the transcriptome was significantly changed by the in vitro environment. Subjecting cultured cells to long-term shear stress significantly rescued the expression of approximately 17% of genes. Inclusion of heterotypic interactions by co-culture of endothelial cells with smooth muscle cells normalized approximately 9% of the original in vivo signature. We also identified novel flow dependent genes, as well as genes that necessitate heterotypic cell interactions to mimic the in vivo transcriptome. Our findings highlight specific genes and pathways that rely on contextual information for adequate expression from those that are agnostic of such environmental cues.


Assuntos
Células Endoteliais , Perfilação da Expressão Gênica , Humanos , Células Endoteliais/metabolismo , Endotélio , Células Cultivadas , Técnicas de Cocultura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA