Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiome ; 6(1): 182, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30326954

RESUMO

BACKGROUND: Infants born by caesarean section or receiving antibiotics are at increased risk of developing metabolic, inflammatory and immunological diseases, potentially due to disruption of normal gut microbiota at a critical developmental time window. We investigated whether probiotic supplementation could ameliorate the effects of antibiotic use or caesarean birth on infant microbiota in a double blind, placebo-controlled randomized clinical trial. Mothers were given a multispecies probiotic, consisting of Bifidobacterium breve Bb99 (Bp99 2 × 108 cfu) Propionibacterium freundenreichii subsp. shermanii JS (2 × 109cfu), Lactobacillus rhamnosus Lc705 (5 × 109 cfu) and Lactobacillus rhamnosus GG (5 × 109 cfu) (N = 168 breastfed and 31 formula-fed), or placebo supplement (N = 201 breastfed and 22 formula-fed) during pregnancy, and the infants were given the same supplement. Faecal samples of the infants were collected at 3 months and analyzed using taxonomic, metagenomic and metaproteomic approaches. RESULTS: The probiotic supplement had a strong overall impact on the microbiota composition, but the effect depended on the infant's diet. Only breastfed infants showed the expected increase in bifidobacteria and reduction in Proteobacteria and Clostridia. In the placebo group, both birth mode and antibiotic use were significantly associated with altered microbiota composition and function, particularly reduced Bifidobacterium abundance. In the probiotic group, the effects of antibiotics and birth mode were either completely eliminated or reduced. CONCLUSIONS: The results indicate that it is possible to correct undesired changes in microbiota composition and function caused by antibiotic treatments or caesarean birth by supplementing infants with a probiotic mixture together with at least partial breastfeeding. TRIAL REGISTRATION: clinicaltrials.gov NCT00298337 . Registered March 2, 2006.


Assuntos
Antibacterianos/administração & dosagem , Bifidobacterium/classificação , Microbioma Gastrointestinal/efeitos dos fármacos , Lacticaseibacillus rhamnosus/classificação , Probióticos/administração & dosagem , Propionibacterium/classificação , Aleitamento Materno , Cesárea , Clostridium/isolamento & purificação , Suplementos Nutricionais , Método Duplo-Cego , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/fisiologia , Humanos , Lactente , Masculino , Gravidez , Proteobactérias/isolamento & purificação
2.
Mol Microbiol ; 89(3): 507-17, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23763588

RESUMO

Fibrinolysis is important in cell migration and tightly regulated by specific inhibitors and activators; of the latter, urokinase (uPA) associates with enhancement of cell migration. Active uPA is formed through cleavage of the single-chain uPA (scuPA). The Salmonella enterica strain 14028R cleaved human scuPA at the peptide bond Lys158-Ile159, the site cleaved also by the physiological activator human plasmin. The cleavage led to activation of scuPA, while no cleavage or activation were detected with the mutant strain 14028R lacking the omptin protease PgtE. Complementation and expression studies confirmed the role of PgtE in scuPA activation. Similar cleavage and activation of scuPA were detected with recombinant Escherichia coli expressing the omptin genes pla from Yersinia pestis, ompT and ompP from E. coli, sopA from Shigella flexneri, and leo from Legionella pneumophila. For these omptins the activation of scuPA is the only shared function so far detected. Only poor cleavage and activation of scuPA were seen with YcoA of Y. pestis and YcoB of Yersinia pseudotuberculosis that are considered to be proteolytically inactive omptin variants. Point mutations of active site residues in Pla and PgtE had different effects on the proteolysis of plasminogen and of scuPA, indicating versatility in omptin proteolysis.


Assuntos
Proteínas de Bactérias/genética , Ativadores de Plasminogênio/genética , Salmonella enterica/enzimologia , Serina Endopeptidases/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Yersinia pestis/enzimologia , Domínio Catalítico/genética , Humanos , Plasminogênio/metabolismo , Mutação Puntual , Proteólise , Salmonella enterica/genética , Yersinia pestis/genética
3.
Infect Immun ; 78(6): 2644-52, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20368351

RESUMO

The Pla surface protease of Yersinia pestis activates human plasminogen and is a central virulence factor in bubonic and pneumonic plague. Pla is a transmembrane beta-barrel protein and member of the omptin family of outer membrane proteases which require bound lipopolysaccharide (LPS) to be proteolytically active. Plasminogen activation and autoprocessing of Pla were dramatically higher in Y. pestis cells grown at 37 degrees C than in cells grown at 20 degrees C; the difference in enzymatic activity by far exceeded the increase in the cellular content of the Pla protein. Y. pestis modifies its LPS structure in response to growth temperature. We purified His(6)-Pla under denaturing conditions and compared various LPS types for their capacity to enhance plasmin formation by His(6)-Pla solubilized in detergent. Reactivation of His(6)-Pla was higher with Y. pestis LPSs isolated from bacteria grown at 37 degrees C than with LPSs from cells grown at 25 degrees C. Lack of O antigens and the presence of the outer core region as well as a lowered level of acylation in LPS were found to enhance the Pla-LPS interaction. Genetic substitution of arginine 138, which is part of a three-dimensional protein motif for binding to lipid A phosphates, decreased both the enzymatic activity of His(6)-Pla and the amount of Pla in Y. pestis cells, suggesting the importance of the Pla-lipid A phosphate interaction. The temperature-induced changes in LPS are known to help Y. pestis to avoid innate immune responses, and our results strongly suggest that they also potentiate Pla-mediated proteolysis.


Assuntos
Proteínas de Bactérias/metabolismo , Lipopolissacarídeos/metabolismo , Ativadores de Plasminogênio/metabolismo , Plasminogênio/metabolismo , Temperatura , Fatores de Virulência/metabolismo , Yersinia pestis/enzimologia , Yersinia pestis/efeitos da radiação , Substituição de Aminoácidos , Animais , Humanos , Lipídeo A/metabolismo , Mutagênese Sítio-Dirigida , Ligação Proteica
4.
Innate Immun ; 15(2): 67-80, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19318417

RESUMO

The omptin family of Gram-negative bacterial transmembrane aspartic proteases comprises surface proteins with a highly conserved beta-barrel fold but differing biological functions. The omptins OmpT of Escherichia coli, PgtE of Salmonella enterica, and Pla of Yersinia pestis differ in their substrate specificity as well as in control of their expression. Their functional differences are in accordance with the differing pathogenesis of the infections caused by E. coli, Salmonella, and Y. pestis, which suggests that the omptins have adapted to the life-styles of their host species. The omptins Pla and PgtE attack on innate immunity by affecting the plasminogen/plasmin, complement, coagulation, fibrinolysis, and matrix metalloproteinase systems, by inactivating antimicrobial peptides, and by enhancing bacterial adhesiveness and invasiveness. Although the mechanistic details of the functions of Pla and PgtE differ, the outcome is the same: enhanced spread and multiplication of Y. pestis and S. enterica in the host. The omptin OmpT is basically a housekeeping protease but it also degrades cationic antimicrobial peptides and may enhance colonization of E. coli at uroepithelia. The catalytic residues in the omptin molecules are spatially conserved, and the differing polypeptide substrate specificities are dictated by minor sequence variations at regions surrounding the catalytic cleft. For enzymatic activity, omptins require association with lipopolysaccharide on the outer membrane. Modification of lipopolysaccharide by in vivo conditions or by bacterial gene loss has an impact on omptin function. Creation of bacterial surface proteolysis is thus a coordinated function involving several surface structures.


Assuntos
Infecções por Enterobacteriaceae/imunologia , Enterobacteriaceae/imunologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Aderência Bacteriana/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Endopeptidases/genética , Endopeptidases/imunologia , Endopeptidases/metabolismo , Enterobacteriaceae/crescimento & desenvolvimento , Enterobacteriaceae/patogenicidade , Infecções por Enterobacteriaceae/enzimologia , Infecções por Enterobacteriaceae/fisiopatologia , Ativação Enzimática , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/imunologia , Proteínas de Escherichia coli/metabolismo , Evolução Molecular , Variação Genética , Humanos , Lipopolissacarídeos/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/imunologia , Peptídeo Hidrolases/metabolismo , Ativadores de Plasminogênio/genética , Ativadores de Plasminogênio/imunologia , Ativadores de Plasminogênio/metabolismo , Conformação Proteica
5.
Int J Med Microbiol ; 298(3-4): 263-78, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17888724

RESUMO

Mammalian matrix metalloproteinases (MMPs) degrade collagen networks in extracellular matrices by cleaving collagen and its denatured form gelatin, and thus enhance migration of mammalian cells. The gastrointestinal pathogen Salmonella enterica survives and grows within host macrophages and dendritic cells, and can disseminate in the host by travelling within infected host cells. Here, we report that S. enterica serovar Typhimurium activates proMMP-9 (gelatinase B) secreted by human primary macrophages, and degrades gelatin after growth within J774A.1 murine macrophage-like cells. Both proMMP-9 activation and gelatin degradation were due to expression of the Salmonella surface protease PgtE. Following intraperitoneal infection in BALB/c mice, the amount of a pgtE deletion derivative was nearly ten-fold lower in the livers and spleens of mice than the amount of wild-type S. enterica, suggesting that PgtE contributes to dissemination of Salmonella in the host. PgtE belongs to the omptin family of bacterial beta-barrel transmembrane proteases. The ortholog of PgtE in Yersinia pestis, Pla, which is central for bacterial virulence in plague, was poor in proMMP-9 activation and in gelatin degradation. To model the evolution of these activities in the omptin barrel, we performed a substitution analysis in Pla and genetically modified it into a PgtE-like gelatinase. Our results indicate that PgtE and Pla have diverged in substrate specificity, and suggest that Salmonella PgtE has evolved to functionally mimic mammalian MMPs.


Assuntos
Proteínas de Bactérias/metabolismo , Endopeptidases/metabolismo , Precursores Enzimáticos/metabolismo , Gelatina/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Salmonella typhimurium/enzimologia , Animais , Proteínas de Bactérias/genética , Evolução Molecular Direcionada , Ativação Enzimática , Feminino , Humanos , Macrófagos/enzimologia , Camundongos , Camundongos Endogâmicos BALB C , Ativadores de Plasminogênio/genética , Ativadores de Plasminogênio/metabolismo , Salmonella typhimurium/patogenicidade , Especificidade por Substrato , Virulência/fisiologia
6.
Adv Exp Med Biol ; 603: 268-78, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17966423

RESUMO

The Pla surface protease of Yersinia pestis, encoded by the Y. pestis-specific plasmid pPCP1, is a versatile virulence factor. In vivo studies have shown that Pla is essential in the establishment of bubonic plague, and in vitro studies have demonstrated various putative virulence functions for the Pla molecule. Pla is a surface protease of the omptin family, and its proteolytic targets include the abundant, circulating human zymogen plasminogen, which is activated by Pla to the serine protease plasmin. Plasmin is important in cell migration, and Pla also proteolytically inactivates the main circulating inhibitor of plasmin, alpha2-antiplasmin. Pla also is an adhesin with affinity for laminin, a major glycoprotein of mammalian basement membranes, which is degraded by plasmin but not by Pla. Together, these functions create uncontrolled plasmin proteolysis targeted at tissue barriers. Other proteolytic targets for Pla include complement proteins. Pla also mediates bacterial invasion into human endothelial cell lines; the adhesive and invasive charateristics of Pla can be genetically dissected from its proteolytic activity. Pla is a 10-stranded antiparallel beta-barrel with five surface-exposed short loops, where the catalytic residues are oriented inwards at the top of the beta-barrel. The sequence of Pla contains a three-dimensional motif for protein binding to lipid A of the lipopolysaccharide. Indeed, the proteolytic activity of Pla requires rough lipopolysaccharide but is sterically inhibited by the O antigen in smooth LPS, which may be the selective advantage of the loss of O antigen in Y. pestis. Members of the omptin family are highly similar in structure but differ in functions and virulence association. The catalytic residues of omptins are conserved, but the variable substrate specificities in proteolysis by Pla and other omptins are dictated by the amino acid sequences near or at the surface loops, and hence reflect differences in substrate binding. The closest orthologs of Pla are PgtE of Salmonella and Epo of Erwinia, which functionally differ from Pla. Pla gives a model of how a horizontally transferred protein fold can diverge into a powerful virulence factor through adaptive mutations.


Assuntos
Proteínas de Bactérias/fisiologia , Ativadores de Plasminogênio/fisiologia , Yersinia pestis/enzimologia , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Escherichia coli/genética , Genes Bacterianos , Humanos , Modelos Moleculares , Filogenia , Ativadores de Plasminogênio/química , Ativadores de Plasminogênio/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Serina Endopeptidases/genética , Virulência/genética , Virulência/fisiologia , Yersinia pestis/genética , Yersinia pestis/patogenicidade
7.
Mol Microbiol ; 51(1): 215-25, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14651623

RESUMO

The O-antigen of lipopolysaccharide (LPS) is a virulence factor in enterobacterial infections, and the advantage of its genetic loss in the lethal pathogen Yersinia pestis has remained unresolved. Y. pestis and Salmonella enterica express beta-barrel surface proteases of the omptin family that activate human plasminogen. Plasminogen activation is central in pathogenesis of plague but has not, however, been found to be important in diarrhoeal disease. We observed that the presence of O-antigen repeats on wild-type or recombinant S. enterica, Yersinia pseudotuberculosis or Escherichia coli prevents plasminogen activation by PgtE of S. enterica and Pla of Y. pestis; the O-antigen did not affect incorporation of the omptins into the bacterial outer membrane. Purified His6-Pla was successfully reconstituted with rough LPS but remained inactive after reconstitution with smooth LPS. Expression of smooth LPS prevented Pla-mediated adhesion of recombinant E. coli to basement membrane as well as invasion into human endothelial cells. Similarly, the presence of an O-antigen prevented PgtE-mediated bacterial adhesion to basement membrane. Substitution of Arg-138 and Arg-171 of the motif for protein binding to lipid A 4'-phosphate abolished proteolytic activity but not membrane translocation of PgtE, indicating dependence of omptin activity on a specific interaction with lipid A. The results suggest that Pla and PgtE require LPS for activity and that the O-antigen sterically prevents recognition of large-molecular-weight substrates. Loss of O-antigen facilitates Pla functions and invasiveness of Y. pestis; on the other hand, smooth LPS renders plasminogen activator cryptic in S. enterica.


Assuntos
Deleção de Genes , Antígenos O/genética , Ativadores de Plasminogênio/metabolismo , Plasminogênio/metabolismo , Salmonella enterica/metabolismo , Yersinia pestis/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias , Endopeptidases , Humanos , Lipopolissacarídeos/biossíntese , Peste/etiologia , Plasmídeos , Ativadores de Plasminogênio/genética , Salmonella enterica/genética , Salmonella enterica/patogenicidade , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Yersinia pestis/genética , Yersinia pestis/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA