Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Respir Physiol Neurobiol ; 295: 103789, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34560292

RESUMO

Critically ill mechanically ventilated (MV) patients develop significant muscle weakness, which has major clinical consequences. There remains uncertainty, however, regarding the severity of leg weakness, the precise relationship between muscle strength and thickness, and the risk factors for weakness in MV patients. We therefore measured both diaphragm (PdiTw) and quadriceps (QuadTw) strength in MV patients using magnetic stimulation and compared strength to muscle thickness. Both PdiTw and QuadTw were profoundly reduced for MV patients, with PdiTw 19 % of normal and QuadTw 6% of normal values. There was a poor correlation between strength and thickness for both muscles, with thickness often remaining in the normal range when strength was severely reduced. Regression analysis revealed reductions in PdiTw correlated with presence of infection (p = 0.006) and age (p = 0.007). QuadTw best correlated with duration of MV (p = 0.036). Limb muscles are profoundly weak in critically ill patients, with a severity that mirrors the level of weakness observed in the diaphragm.


Assuntos
Estado Terminal , Diafragma/fisiopatologia , Debilidade Muscular/diagnóstico , Debilidade Muscular/fisiopatologia , Músculo Quadríceps/fisiopatologia , Respiração Artificial , Fatores Etários , Estado Terminal/terapia , Humanos , Unidades de Terapia Intensiva , Campos Magnéticos , Debilidade Muscular/etiologia , Estimulação Física , Fatores de Tempo
2.
Crit Care ; 25(1): 308, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446067

RESUMO

BACKGROUND: Intensive care unit acquired weakness is a serious problem, contributing to respiratory failure and reductions in ambulation. Currently, there is no pharmacological therapy for this condition. Studies indicate, however, that both beta-hydroxy-beta-methylbutyrate (HMB) and eicosapentaenoic acid (EPA) increase muscle function in patients with cancer and in older adults. The purpose of this study was to determine whether HMB and/or EPA administration would increase diaphragm and quadriceps strength in mechanically ventilated patients. METHODS: Studies were performed on 83 mechanically ventilated patients who were recruited from the Medical Intensive Care Units at the University of Kentucky. Diaphragm strength was assessed as the trans-diaphragmatic pressure generated by supramaximal magnetic phrenic nerve stimulation (PdiTw). Quadriceps strength was assessed as leg force generated by supramaximal magnetic femoral nerve stimulation (QuadTw). Diaphragm and quadriceps thickness were assessed by ultrasound. Baseline measurements of muscle strength and size were performed, and patients were then randomized to one of four treatment groups (placebo, HMB 3 gm/day, EPA 2 gm/day and HMB plus EPA). Strength and size measurements were repeated 11 days after study entry. ANCOVA statistical testing was used to compare variables across the four experimental groups. RESULTS: Treatments failed to increase the strength and thickness of either the diaphragm or quadriceps when compared to placebo. In addition, treatments also failed to decrease the duration of mechanical ventilation after study entry. CONCLUSIONS: These results indicate that a 10-day course of HMB and/or EPA does not improve skeletal muscle strength in critically ill mechanically ventilated patients. These findings also confirm previous reports that diaphragm and leg strength in these patients are profoundly low. Additional studies will be needed to examine the effects of other anabolic agents and innovative forms of physical therapy. TRIAL REGISTRATION: ClinicalTrials.gov, NCT01270516. Registered 5 January 2011, https://clinicaltrials.gov/ct2/show/NCT01270516?term=Supinski&draw=2&rank=4 .


Assuntos
Ácido Eicosapentaenoico/farmacologia , Força Muscular/efeitos dos fármacos , Valeratos/farmacologia , Idoso , Estado Terminal/terapia , Diafragma/efeitos dos fármacos , Feminino , Humanos , Kentucky , Masculino , Pessoa de Meia-Idade , Músculo Quadríceps/efeitos dos fármacos , Respiração Artificial/efeitos adversos , Respiração Artificial/métodos
3.
J Appl Physiol (1985) ; 131(2): 630-642, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34197232

RESUMO

Calpain activation has been postulated as a potential contributor to the loss of muscle mass and function associated with both aging and disease, but limitations of previous experimental approaches have failed to completely examine this issue. We hypothesized that mice overexpressing calpastatin (CalpOX), an endogenous inhibitor of calpain, solely in skeletal muscle would show an amelioration of the aging muscle phenotype. We assessed four groups of mice (age in months): 1) young wild type (WT; 5.71 ± 0.43), 2) young CalpOX (5.6 ± 0.5), 3) old WT (25.81 ± 0.56), and 4) old CalpOX (25.91 ± 0.60) for diaphragm and limb muscle (extensor digitorum longus, EDL) force frequency relations. Aging significantly reduced diaphragm and EDL peak force in old WT mice, and decreased the force-time integral during a fatiguing protocol by 48% and 23% in aged WT diaphragm and EDL, respectively. In contrast, we found that CalpOX mice had significantly increased diaphragm and EDL peak force in old mice, similar to that observed in young mice. The impact of aging on the force-time integral during a fatiguing protocol was abolished in the diaphragm and EDL of old CalpOX animals. Surprisingly, we found that CalpOX had a significant impact on longevity, increasing median survival from 20.55 mo in WT mice to 24 mo in CalpOX mice (P = 0.0006).NEW & NOTEWORTHY This is the first study to investigate the role of calpastatin overexpression on skeletal muscle specific force in aging rodents. Muscle-specific overexpression of calpastatin, the endogenous calpain inhibitor, prevented aging-induced reductions in both EDL and diaphragm specific force and, remarkably, increased life span. These data suggest that diaphragm dysfunction in aging may be a major factor in determining longevity. Targeting the calpain/calpastatin pathway may elucidate novel therapies to combat skeletal muscle weakness in aging.


Assuntos
Envelhecimento , Proteínas de Ligação ao Cálcio , Longevidade , Debilidade Muscular , Animais , Calpaína , Camundongos , Músculo Esquelético
4.
J Appl Physiol (1985) ; 131(2): 778-787, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34197233

RESUMO

Sepsis-induced diaphragm dysfunction is a major contributor to respiratory failure in mechanically ventilated patients. There are no pharmacological treatments for this syndrome, but studies suggest that diaphragm weakness is linked to mitochondrial free radical generation. We hypothesized that administration of mitoquinone mesylate (MitoQ), a mitochondrially targeted free radical scavenger, would prevent sepsis-induced diaphragm dysfunction. We compared diaphragm function in 4 groups of male mice: 1) sham-operated controls treated with saline (0.3 mL ip), 2) sham-operated treated with MitoQ (3.5 mg/kg/day given intraperitoneally in saline), 3) cecal ligation puncture (CLP) mice treated with saline, and 4) CLP mice treated with MitoQ. Forty-eight hours after surgery, we assessed diaphragm force generation, myosin heavy chain content, state 3 mitochondrial oxygen consumption (OCR), and aconitase activity. We also determined effects of MitoQ in female mice with CLP sepsis and in mice with endotoxin-induced sepsis. CLP decreased diaphragm specific force generation and MitoQ prevented these decrements (e.g. maximal force averaged 30.2 ± 1.3, 28.0 ± 1.3, 12.8 ± 1.9, and 30.0 ± 1.0 N/cm2 for sham, sham + MitoQ, CLP, and CLP + MitoQ groups, respectively, P < 0.001). CLP also reduced diaphragm mitochondrial OCR and aconitase activity; MitoQ blocked both effects. Similar responses were observed in female mice and in endotoxin-induced sepsis. Moreover, delayed MitoQ treatment (by 6 h) was as effective as immediate treatment. These data indicate that MitoQ prevents sepsis-induced diaphragm dysfunction, preserving force generation. MitoQ may be a useful therapeutic agent to preserve diaphragm function in critically ill patients with sepsis.NEW & NOTEWORTHY This is the first study to show that mitoquinone mesylate (MitoQ), a mitochondrially targeted antioxidant, treats sepsis-induced skeletal muscle dysfunction. This biopharmaceutical agent is without known side effects and is currently being used by healthy individuals and in clinical trials in patients with various diseases. When taken together, our results suggest that MitoQ has the potential to be immediately translated into treatment for sepsis-induced skeletal muscle dysfunction.


Assuntos
Diafragma , Sepse , Animais , Feminino , Humanos , Masculino , Mesilatos , Camundongos , Compostos Organofosforados , Sepse/complicações , Sepse/tratamento farmacológico , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia
5.
Crit Care Med ; 48(11): 1595-1603, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32826429

RESUMO

OBJECTIVES: Physical therapy is standard care for mechanically ventilated patients, but there is no evidence, using nonvolitional, objective measurements, that physical therapy increases muscle strength in this population. The present study tested the hypothesis that 2 weeks of standard, conventional physical therapy provided at a ventilator weaning facility would increase quadriceps strength in mechanically ventilated patients. DESIGN: Prospective observational study. SETTING: Ventilator weaning unit. PATIENTS: Patients who were transferred from an acute care hospital because of failure to wean from mechanical ventilation and who were receiving physical therapy as prescribed by facility staff. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We employed a novel, nonvolitional objective technique, quadriceps twitch force generation in response to femoral nerve magnetic stimulation, to assess leg strength before and after 2 weeks of conventional physical therapy. The duration and specific exercises provided to patients were also recorded. In a subset of patients, we measured muscle activation intensity using wireless electromyogram recordings. Indices of respiratory function (maximum inspiratory pressure generation and the rapid shallow breathing index) were also assessed. Patients' responses to 2 weeks of physical therapy were poor; on average, quadriceps twitch fell by -1.02 ± 0.71 Newtons. Neither physical therapy duration nor specific forms of exercise were identified to positively impact quadriceps twitch. Electromyogram recordings indicated that during training, muscle activation was poor. Consequently, therapists spent substantial time performing exercises that elicited little muscle activation. Physical therapy did not improve respiratory function. CONCLUSIONS: Standard physical therapy delivered in a ventilator weaning facility failed to improve quadriceps leg strength in a majority of mechanically ventilated patients. The fact that mechanically ventilated patients fail to achieve high levels of muscle activation during physical therapy provides a potential explanation as to why physical therapy may often be ineffective. We speculate that use of novel methods which increase muscle activation during exercise may improve responses of mechanically ventilated patients to physical therapy.


Assuntos
Força Muscular , Modalidades de Fisioterapia , Músculo Quadríceps , Respiração Artificial , Eletromiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos , Respiração Artificial/efeitos adversos , Resultado do Tratamento , Desmame do Respirador/efeitos adversos , Desmame do Respirador/métodos
6.
Am J Physiol Lung Cell Mol Physiol ; 319(2): L228-L238, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32460519

RESUMO

Clinical studies indicate that sepsis-induced diaphragm dysfunction is a major contributor to respiratory failure in mechanically ventilated patients. Currently there is no drug to treat this form of diaphragm weakness. Sepsis-induced muscle dysfunction is thought to be triggered by excessive mitochondrial free radical generation; we therefore hypothesized that therapies that target mitochondrial free radical production may prevent sepsis-induced diaphragm weakness. The present study determined whether MitoTEMPOL, a mitochondrially targeted free radical scavenger, could reduce sepsis-induced diaphragm dysfunction. Using an animal model of sepsis, we compared four groups of mice: 1) sham-operated controls, 2) animals with sepsis induced by cecal ligation puncture (CLP), 3) sham controls given MitoTEMPOL (10 mg·kg-1·day-1 ip), and 4) CLP animals given MitoTEMPOL. At 48 h after surgery, we measured diaphragm force generation, mitochondrial function, proteolytic enzyme activities, and myosin heavy chain (MHC) content. We also examined the effects of delayed administration of MitoTEMPOL (by 6 h) on CLP-induced diaphragm weakness. The effects of MitoTEMPOL on cytokine-mediated alterations on muscle cell superoxide generation and cell size in vitro were also assessed. Sepsis markedly reduced diaphragm force generation. Both immediate and delayed MitoTEMPOL administration prevented sepsis-induced diaphragm weakness. MitoTEMPOL reversed sepsis-mediated reductions in mitochondrial function, activation of proteolytic pathways, and decreases in MHC content. Cytokines increased muscle cell superoxide generation and decreased cell size, effects that were ablated by MitoTEMPOL. MitoTEMPOL and other compounds that target mitochondrial free radical generation may be useful therapies for sepsis-induced diaphragm weakness.


Assuntos
Antioxidantes/farmacologia , Diafragma/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Mitocôndrias/efeitos dos fármacos , Debilidade Muscular/etiologia , Debilidade Muscular/prevenção & controle , Sepse/complicações , Animais , Ceco/efeitos dos fármacos , Ceco/metabolismo , Citocinas/metabolismo , Diafragma/metabolismo , Modelos Animais de Doenças , Ligadura/métodos , Masculino , Camundongos , Mitocôndrias/metabolismo , Debilidade Muscular/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Proteólise/efeitos dos fármacos , Sepse/metabolismo
7.
J Appl Physiol (1985) ; 128(3): 463-472, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31944887

RESUMO

Sepsis-induced diaphragm dysfunction contributes to respiratory failure and mortality in critical illness. There are no treatments for this form of diaphragm weakness. Studies show that sepsis-induced muscle dysfunction is triggered by enhanced mitochondrial free radical generation. We tested the hypothesis that SS31, a mitochondrially targeted antioxidant, would attenuate sepsis-induced diaphragm dysfunction. Four groups of mice were studied: 1) sham-operated controls, 2) sham-operated+SS31 (10 mg·kg-1·day-1), 3) cecal ligation puncture (CLP), and 4) CLP+SS31. Forty-eight hours postoperatively, diaphragm strips with attached phrenic nerves were isolated, and the following were assessed: muscle-field-stimulated force-frequency curves, nerve-stimulated force-frequency curves, and muscle fatigue. We also measured calpain activity, 20S proteasomal activity, myosin heavy chain (MHC) levels, mitochondrial function, and aconitase activity, an index of mitochondrial superoxide generation. Sepsis markedly reduced diaphragm force generation; SS31 prevented these decrements. Diaphragm-specific force generation averaged 30.2 ± 1.4, 9.4 ± 1.8, 25.5 ± 2.3, and 27.9 ± 0.6 N/cm2 for sham, CLP, sham+SS31, and CLP+SS31 groups (P < 0.001). Similarly, with phrenic nerve stimulation, CLP depressed diaphragm force generation, effects prevented by SS31. During endurance trials, force was significantly reduced with CLP, and SS31 prevented these reductions (P < 0.001). Sepsis also increased diaphragm calpain activity, increased 20S proteasomal activity, decreased MHC levels, reduced mitochondrial function (state 3 rates and ATP generation), and reduced aconitase activity; SS31 prevented each of these sepsis-induced alterations (P ≤ 0.017 for all indices). SS31 prevents sepsis-induced diaphragm dysfunction, preserving force generation, endurance, and mitochondrial function. Compounds with similar mechanisms of action may be useful therapeutically to preserve diaphragm function in patients who are septic and critically ill.NEW & NOTEWORTHY Sepsis-induced diaphragm dysfunction is a major contributor to mortality and morbidity in patients with critical illness in intensive care units. Currently, there is no proven pharmacological treatment for this problem. This study provides the novel finding that administration of SS31, a mitochondrially targeted antioxidant, preserves diaphragm myosin heavy chain content and mitochondrial function, thereby preventing diaphragm weakness and fatigue in sepsis.


Assuntos
Diafragma , Sepse , Animais , Antioxidantes/farmacologia , Ceco , Humanos , Camundongos , Debilidade Muscular/prevenção & controle
8.
Respir Physiol Neurobiol ; 271: 103289, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31505275

RESUMO

Infection induced diaphragm weakness is a major contributor to death and prolonged mechanical ventilation in critically ill patients. Infection induced muscle dysfunction is associated with activation of muscle proteolytic enzymes, and taurine is known to suppress proteolysis. We therefore postulated that taurine administration may prevent infection induced diaphragm dysfunction. The purpose of this study was to test this hypothesis using a clinically relevant animal model of infection, i.e. cecal ligation puncture induced sepsis (CLP). Studies were performed on (n = 5-7 mice/group): (a) sham operated controls, (b) animals with sepsis induced by CLP, (c) sham operated animals given taurine (75 mg/kg/d, intraperitoneally), and (d) CLP animals given taurine. At intervals after surgery animals were euthanized, diaphragm force generation measured in vitro, and diaphragm calpain, caspase and proteasomal activity determined. CLP elicited a large reduction in diaphragm specific force generation at 24 h (1-150 Hz, p < 0.001) and taurine significantly attenuated CLP induced diaphragm weakness at all stimulation frequencies (p < 0.001). CLP induced significant increases in diaphragm calpain, caspase and proteasomal activity; taurine administration prevented increases in the activity of all three pathways. In additional time course experiments, diaphragm force generation remained at control levels over 72 h in CLP animals treated with daily taurine administration, while CLP animals demonstrated severe, sustained reductions in diaphragm strength (p < 0.01 for all time points). Our results indicate that taurine administration prevents infection induced diaphragm weakness and reduces activation of three major proteolytic pathways. Because this agent is has been shown to be safe, non-toxic when administered to humans, taurine may have a role in treating infection induced diaphragm weakness. Future clinical studies will be needed to assess this possibility.


Assuntos
Diafragma/efeitos dos fármacos , Debilidade Muscular/tratamento farmacológico , Sepse/tratamento farmacológico , Taurina/uso terapêutico , Animais , Diafragma/metabolismo , Camundongos , Debilidade Muscular/etiologia , Debilidade Muscular/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Sepse/complicações , Sepse/metabolismo , Taurina/farmacologia
9.
Chest ; 157(2): 310-322, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31494084

RESUMO

Classically, mitochondria have largely been believed to influence the development of illness by modulating cell metabolism and determining the rate of production of high-energy phosphate compounds (eg, adenosine triphosphate). It is now recognized that this view is simplistic and that mitochondria play key roles in many other processes, including cell signaling, regulating gene expression, modulating cellular calcium levels, and influencing the activation of cell death pathways (eg, caspase activation). Moreover, these multiple mitochondrial functional characteristics are now known to influence the evolution of cellular and organ function in many disease states, including sepsis, ICU-acquired skeletal muscle dysfunction, acute lung injury, acute renal failure, and critical illness-related immune function dysregulation. In addition, diseased mitochondria generate toxic compounds, most notably released mitochondrial DNA, which can act as danger-associated molecular patterns to induce systemic toxicity and damage multiple organs throughout the body. This article reviews these evolving concepts relating mitochondrial function and acute illness. The discussion is organized into four sections: (1) basics of mitochondrial physiology; (2) cellular mechanisms of mitochondrial pathophysiology; (3) critical care disease processes whose initiation and evolution are shaped by mitochondrial pathophysiology; and (4) emerging treatments for mitochondrial dysfunction in critical illness.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Mitocôndrias/metabolismo , Doenças Musculares/metabolismo , Sepse/metabolismo , Lesão Pulmonar Aguda/terapia , Alarminas/metabolismo , Antioxidantes/uso terapêutico , Césio/uso terapêutico , Estado Terminal , DNA Mitocondrial/metabolismo , Humanos , Melatonina/uso terapêutico , Mitocôndrias/imunologia , Mitocôndrias/transplante , Músculo Esquelético , Doenças Musculares/terapia , Biogênese de Organelas , Resveratrol/uso terapêutico , Sepse/imunologia , Sepse/terapia
10.
Chest ; 153(4): 1040-1051, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28887062

RESUMO

The diaphragm is the major muscle of inspiration, and its function is critical for optimal respiration. Diaphragmatic failure has long been recognized as a major contributor to death in a variety of systemic neuromuscular disorders. More recently, it is increasingly apparent that diaphragm dysfunction is present in a high percentage of critically ill patients and is associated with increased morbidity and mortality. In these patients, diaphragm weakness is thought to develop from disuse secondary to ventilator-induced diaphragm inactivity and as a consequence of the effects of systemic inflammation, including sepsis. This form of critical illness-acquired diaphragm dysfunction impairs the ability of the respiratory pump to compensate for an increased respiratory workload due to lung injury and fluid overload, leading to sustained respiratory failure and death. This review examines the presentation, causes, consequences, diagnosis, and treatment of disorders that result in acquired diaphragm dysfunction during critical illness.


Assuntos
Diafragma/fisiologia , Doenças Musculares/fisiopatologia , Respiração Artificial/efeitos adversos , Cuidados Críticos/métodos , Estado Terminal , Infecção Hospitalar/diagnóstico , Diafragma/diagnóstico por imagem , Terapia por Estimulação Elétrica/métodos , Humanos , Magnetoterapia/métodos , Debilidade Muscular/diagnóstico , Debilidade Muscular/fisiopatologia , Doenças Musculares/diagnóstico , Doenças Musculares/terapia , Insuficiência Respiratória/diagnóstico , Insuficiência Respiratória/etiologia , Insuficiência Respiratória/terapia , Ultrassonografia
12.
Crit Care ; 20: 77, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-27036885

RESUMO

BACKGROUND: Respiratory muscle weakness contributes to respiratory failure in ICU patients. Unfortunately, assessment of weakness is difficult since the most objective test, transdiaphragmatic pressure in response to phrenic nerve stimulation (PdiTw), is difficult to perform. While most clinicians utilize maximum inspiratory pressure (Pimax) to assess strength, the relationship of this index to PdiTw has not been evaluated in a large ICU population. The purpose of the present study was to assess both PdiTw and Pimax in ICU patients to determine how these indices correlate with each other, what factors influence these indices, and how well these indices predict outcomes. METHODS: Studies were performed on adult mechanically ventilated patients in the University of Kentucky MICU (n = 60). We assessed PdiTw by measuring transdiaphragmatic pressure (Pdi) in response to bilateral twitch stimulation of the phrenic nerves using dual magnetic stimulators (Magstim 200). Pimax was determined by measuring airway pressure during a 30-second inspiratory occlusion. We also assessed the twitch and maximum force generation for diaphragms excised from control and septic mice. RESULTS: Both Pimax and PdiTw measurements were profoundly reduced for mechanically ventilated MICU patients when compared to normal reference values, e.g., Pimax averaged 56% of the predicted value for normal subjects. For the ICU population as a whole, PdiTw and Pimax values correlated with each other (r(2) = 0.373, p < 0.001), but there was wide scatter and, as a result, PdiTw could not be reliably calculated from Pimax levels for individual subjects. Infection selectively reduced low-frequency force generation more than high-frequency force generation for both our mouse experiments (comparing muscle twitch to 150 Hz tetanic force) and for MICU patients (comparing PdiTw to Pimax). This effect of infection may contribute to scatter in the PdiTw to Pimax relationship. We also found that both PdiTw and Pimax were significantly correlated with both patient survival and the duration of mechanical ventilation, albeit statistically, PdiTw was the better predictor. CONCLUSIONS: While more difficult to measure, the PdiTw is a better predictor of outcomes in mechanically ventilated MICU patients than the Pimax. Nevertheless, for some clinical applications, the Pimax determination is a reasonable alternative.


Assuntos
Diafragma/fisiopatologia , Unidades de Terapia Intensiva/estatística & dados numéricos , Ventilação com Pressão Positiva Intermitente/efeitos adversos , Adulto , Animais , Feminino , Mortalidade Hospitalar/tendências , Humanos , Unidades de Terapia Intensiva/tendências , Kentucky , Masculino , Camundongos , Modelos Animais , Debilidade Muscular/diagnóstico , Debilidade Muscular/fisiopatologia , Nervo Frênico/patologia , Pressão/efeitos adversos , Respiração Artificial/efeitos adversos , Respiração Artificial/métodos , Respiração Artificial/mortalidade , Testes de Função Respiratória/estatística & dados numéricos , Músculos Respiratórios/fisiopatologia
13.
Am J Physiol Lung Cell Mol Physiol ; 310(10): L975-84, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26968769

RESUMO

Calpain activation contributes to the development of infection-induced diaphragm weakness, but the mechanisms by which infections activate calpain are poorly understood. We postulated that skeletal muscle calcium-dependent phospholipase A2 (cPLA2) is activated by cytokines and has downstream effects that induce calpain activation and muscle weakness. We determined whether cPLA2 activation mediates cytokine-induced calpain activation in isolated skeletal muscle (C2C12) cells and infection-induced diaphragm weakness in mice. C2C12 cells were treated with the following: 1) vehicle; 2) cytomix (TNF-α 20 ng/ml, IL-1ß 50 U/ml, IFN-γ 100 U/ml, LPS 10 µg/ml); 3) cytomix + AACOCF3, a cPLA2 inhibitor (10 µM); or 4) AACOCF3 alone. At 24 h, we assessed cell cPLA2 activity, mitochondrial superoxide generation, calpain activity, and calpastatin activity. We also determined if SS31 (10 µg/ml), a mitochondrial superoxide scavenger, reduced cytomix-mediated calpain activation. Finally, we determined if CDIBA (10 µM), a cPLA2 inhibitor, reduced diaphragm dysfunction due to cecal ligation puncture in mice. Cytomix increased C2C12 cell cPLA2 activity (P < 0.001) and superoxide generation; AACOCF3 and SS31 blocked increases in superoxide generation (P < 0.001). Cytomix also activated calpain (P < 0.001) and inactivated calpastatin (P < 0.01); both AACOCF3 and SS31 prevented these changes. Cecal ligation puncture reduced diaphragm force in mice, and CDIBA prevented this reduction (P < 0.001). cPLA2 modulates cytokine-induced calpain activation in cells and infection-induced diaphragm weakness in animals. We speculate that therapies that inhibit cPLA2 may prevent diaphragm weakness in infected, critically ill patients.


Assuntos
Diafragma/fisiopatologia , Fosfolipases A2 do Grupo IV/fisiologia , Sepse/enzimologia , Sepse/fisiopatologia , Animais , Linhagem Celular , Diafragma/enzimologia , Diafragma/microbiologia , Camundongos , Debilidade Muscular , Superóxidos/metabolismo
15.
Am J Physiol Lung Cell Mol Physiol ; 309(6): L614-24, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26138644

RESUMO

Calpain contributes to infection-induced diaphragm dysfunction but the upstream mechanism(s) responsible for calpain activation are poorly understood. It is known, however, that cytokines activate neutral sphingomyelinase (nSMase) and nSMase has downstream effects with the potential to increase calpain activity. We tested the hypothesis that infection-induced skeletal muscle calpain activation is a consequence of nSMase activation. We administered cytomix (20 ng/ml TNF-α, 50 U/ml IL-1ß, 100 U/ml IFN-γ, 10 µg/ml LPS) to C2C12 muscle cells to simulate the effects of infection in vitro and studied mice undergoing cecal ligation puncture (CLP) as an in vivo model of infection. In cell studies, we assessed sphingomyelinase activity, subcellular calcium levels, and calpain activity and determined the effects of inhibiting sphingomyelinase using chemical (GW4869) and genetic (siRNA to nSMase2 and nSMase3) techniques. We assessed diaphragm force and calpain activity and utilized GW4869 to inhibit sphingomyelinase in mice. Cytomix increased cytosolic and mitochondrial calcium levels in C2C12 cells (P < 0.001); addition of GW4869 blocked these increases (P < 0.001). Cytomix also activated calpain, increasing calpain activity (P < 0.02), and the calpain-mediated cleavage of procaspase 12 (P < 0.001). Procaspase 12 cleavage was attenuated by either GW4869 (P < 0.001), BAPTA-AM (P < 0.001), or siRNA to nSMase2 (P < 0.001) but was unaffected by siRNA to nSMase3. GW4869 prevented CLP-induced diaphragm calpain activation and diaphragm weakness in mice. These data suggest that nSMase2 activation is required for the development of infection-induced diaphragm calpain activation and muscle weakness. As a consequence, therapies that inhibit nSMase2 in patients may prevent infection-induced skeletal muscle dysfunction.


Assuntos
Calpaína/metabolismo , Músculo Esquelético/enzimologia , Esfingomielina Fosfodiesterase/fisiologia , Compostos de Anilina/farmacologia , Animais , Compostos de Benzilideno/farmacologia , Linhagem Celular , Diafragma/enzimologia , Diafragma/fisiopatologia , Ativação Enzimática , Lipopolissacarídeos/farmacologia , Camundongos , Força Muscular , Debilidade Muscular/enzimologia , Debilidade Muscular/imunologia , Debilidade Muscular/microbiologia , Proteólise , Sepse/enzimologia , Sepse/fisiopatologia
16.
J Appl Physiol (1985) ; 117(8): 921-9, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25170071

RESUMO

Recent work indicates that infections are a major contributor to diaphragm weakness in patients who are critically ill and mechanically ventilated, and that diaphragm weakness is a risk factor for death and prolonged mechanical ventilation. Infections activate muscle calpain, but many believe this is an epiphenomenon and that other proteolytic processes are responsible for infection-induced muscle weakness. We tested the hypothesis that muscle-specific overexpression of calpastatin (CalpOX; an endogenous calpain inhibitor) would attenuate diaphragm dysfunction in cecal ligation puncture (CLP)-induced sepsis. We studied 1) wild-type (WT) sham-operated mice, 2) WT CLP-operated mice, 3) CalpOX sham-operated mice, and 4) CalpOX CLP-operated mice (n = 9-10/group). Twenty-four hours after surgery, we assessed the diaphragm force-frequency relationship, diaphragm mass, and total protein content and diaphragm levels of talin and myosin heavy chain (MHC). CLP markedly reduced diaphragm-specific force generation (force/cross-sectional area), which was prevented by calpastatin overexpression (force averaged 21.4 ± 0.5, 6.9 ± 0.8, 22.4 ± 1.0, and 18.3 ± 1.3 N/cm(2), respectively, for WT sham, WT CLP, CalpOX sham, and CalpOX CLP groups, P < 0.001). Diaphragm mass and total protein content were similar in all groups. CLP induced talin cleavage and reduced MHC levels; CalpOX prevented these alterations. CLP-induced sepsis rapidly reduces diaphragm-specific force generation and is associated with cleavage and/or depletion of key muscle proteins (talin, MHC), effects prevented by muscle-specific calpastatin overexpression. These data indicate that calpain activation is a major cause of diaphragm weakness in response to CLP-induced sepsis.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Ceco/metabolismo , Diafragma/metabolismo , Diafragma/patologia , Debilidade Muscular/metabolismo , Músculos/metabolismo , Sepse/metabolismo , Animais , Calpaína/metabolismo , Ceco/patologia , Ligadura/métodos , Camundongos , Proteínas Musculares/metabolismo , Debilidade Muscular/patologia , Músculos/patologia , Cadeias Pesadas de Miosina/metabolismo , Sepse/patologia , Talina/metabolismo
17.
Crit Care ; 18(3): R88, 2014 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-24886999

RESUMO

INTRODUCTION: A major consequence of ICU-acquired weakness (ICUAW) is diaphragm weakness, which prolongs the duration of mechanical ventilation. Hyperglycemia (HG) is a risk factor for ICUAW. However, the mechanisms underlying HG-induced respiratory muscle weakness are not known. Excessive reactive oxygen species (ROS) injure multiple tissues during HG, but only one study suggests that excessive ROS generation may be linked to HG-induced diaphragm weakness. We hypothesized that HG-induced diaphragm dysfunction is mediated by excessive superoxide generation and that administration of a specific superoxide scavenger, polyethylene glycol superoxide dismutase (PEG-SOD), would ameliorate these effects. METHODS: HG was induced in rats using streptozotocin (60 mg/kg intravenously) and the following groups assessed at two weeks: controls, HG, HG + PEG-SOD (2,000U/kg/d intraperitoneally for seven days), and HG + denatured (dn)PEG-SOD (2000U/kg/d intraperitoneally for seven days). PEG-SOD and dnPEG-SOD were administered on day 8, we measured diaphragm specific force generation in muscle strips, force-pCa relationships in single permeabilized fibers, contractile protein content and indices of oxidative stress. RESULTS: HG reduced diaphragm specific force generation, altered single fiber force-pCa relationships, depleted troponin T, and increased oxidative stress. PEG-SOD prevented HG-induced reductions in diaphragm specific force generation (for example 80 Hz force was 26.4 ± 0.9, 15.4 ± 0.9, 24.0 ± 1.5 and 14.9 ± 0.9 N/cm2 for control, HG, HG + PEG-SOD, and HG + dnPEG-SOD groups, respectively, P <0.001). PEG-SOD also restored HG-induced reductions in diaphragm single fiber force generation (for example, Fmax was 182.9 ± 1.8, 85.7 ± 2.0, 148.6 ± 2.4 and 90.9 ± 1.5 kPa in control, HG, HG + PEG-SOD, and HG + dnPEG-SOD groups, respectively, P <0.001). HG-induced troponin T depletion, protein nitrotyrosine formation, and carbonyl modifications were largely prevented by PEG-SOD. CONCLUSIONS: HG-induced reductions in diaphragm force generation occur largely at the level of the contractile proteins, are associated with depletion of troponin T and increased indices of oxidative stress, findings not previously reported. Importantly, administration of PEG-SOD largely ablated these derangements, indicating that superoxide generation plays a major role in hyperglycemia-induced diaphragm dysfunction. This new mechanistic information could explain how HG alters diaphragm function during critical illness.


Assuntos
Diafragma/metabolismo , Hiperglicemia/complicações , Hiperglicemia/metabolismo , Debilidade Muscular/etiologia , Debilidade Muscular/metabolismo , Estresse Oxidativo/fisiologia , Animais , Diafragma/patologia , Hiperglicemia/patologia , Masculino , Contração Muscular/fisiologia , Debilidade Muscular/patologia , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley
18.
Respir Physiol Neurobiol ; 196: 63-8, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24632527

RESUMO

Infections induce severe respiratory muscle weakness. Currently there are no treatments for this important clinical problem. We tested the hypothesis that ß-hydroxy-ß-methylbutyrate (HMB) would prevent sepsis-induced diaphragm weakness. Four groups of adult male mice were studied: controls (saline-injected), sepsis (intraperitoneal lipopolysaccharide), sepsis+HMB (injected intravenously), and HMB. Diaphragm force generation and indices of caspase 3, calpain, 20S proteasomal subunit, and double-stranded RNA-dependent protein kinase (PKR) activation were assessed after 24h. Sepsis elicited large reductions in diaphragm specific force generation at all stimulation frequencies. Endotoxin also activated caspase 3, calpain, the 20S proteasomal subunit and PKR in the diaphragm. HMB blocked sepsis-induced caspase 3, 20S proteasomal and PKR activation, but did not prevent calpain activation. Most importantly, HMB administration significantly attenuated sepsis-induced diaphragm weakness, preserving muscle force generation at all stimulation frequencies (p<0.01). We speculate that HMB may prove to be an important therapy in infected patients, with the potential to increase diaphragm strength, to reduce the duration of mechanical ventilation and to decrease mortality in this patient population.


Assuntos
Diafragma/efeitos dos fármacos , Debilidade Muscular/etiologia , Debilidade Muscular/prevenção & controle , Fármacos Neuromusculares/farmacologia , Sepse/complicações , Valeratos/farmacologia , Animais , Calpaína/metabolismo , Caspase 3/metabolismo , Diafragma/patologia , Diafragma/fisiopatologia , Modelos Animais de Doenças , Lipopolissacarídeos , Masculino , Camundongos , Força Muscular/efeitos dos fármacos , Debilidade Muscular/patologia , Tamanho do Órgão , Fosforilação/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , eIF-2 Quinase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA