RESUMO
Rare coding alleles play crucial roles in the molecular diagnosis of genetic diseases. However, the systemic identification of these alleles has been challenging due to their scarcity in the general population. Here, we discovered and characterized rare coding alleles contributing to genetic dyslipidemia, a principal risk for coronary artery disease, among over a million individuals combining three large contemporary genetic datasets (the Million Veteran Program, n = 634,535, UK Biobank, n = 431,178, and the All of Us Research Program, n = 92,304) totaling 1,158,017 multi-ancestral individuals. Unlike previous rare variant studies in lipids, this study included 238,243 individuals (20.6%) from non-European-like populations. Testing 2,997,401 rare coding variants from diverse backgrounds, we identified 800 exome-wide significant associations across 209 genes including 176 predicted loss of function and 624 missense variants. Among these exome-wide associations, 130 associations were driven by non-European-like populations. Associated alleles are highly enriched in functional variant classes, showed significant additive and recessive associations, exhibited similar effects across populations, and resolved pathogenicity for variants enriched in African or South-Asian populations. Furthermore, we identified 5 lipid-related genes associated with coronary artery disease (RORC, CFAP65, GTF2E2, PLCB3, and ZNF117). Among them, RORC is a potentially novel therapeutic target through the down regulation of LDLC by its silencing. This study provides resources and insights for understanding causal mechanisms, quantifying the expressivity of rare coding alleles, and identifying novel drug targets across diverse populations.
RESUMO
The incidence of metabolic dysfunction-associated steatohepatitis (MASH) is on the rise, and with limited pharmacological therapy available, identification of new metabolic targets is urgently needed. Oxalate is a terminal metabolite produced from glyoxylate by hepatic lactate dehydrogenase (LDHA). The liver-specific alanine-glyoxylate aminotransferase (AGXT) detoxifies glyoxylate, preventing oxalate accumulation. Here we show that AGXT is suppressed and LDHA is activated in livers from patients and mice with MASH, leading to oxalate overproduction. In turn, oxalate promotes steatosis in hepatocytes by inhibiting peroxisome proliferator-activated receptor-α (PPARα) transcription and fatty acid ß-oxidation and induces monocyte chemotaxis via C-C motif chemokine ligand 2. In male mice with diet-induced MASH, targeting oxalate overproduction through hepatocyte-specific AGXT overexpression or pharmacological inhibition of LDHA potently lowers steatohepatitis and fibrosis by inducing PPARα-driven fatty acid ß-oxidation and suppressing monocyte chemotaxis, nuclear factor-κB and transforming growth factor-ß targets. These findings highlight hepatic oxalate overproduction as a target for the treatment of MASH.
Assuntos
Fígado Gorduroso , Fígado , Oxalatos , Animais , Camundongos , Oxalatos/metabolismo , Humanos , Fígado/metabolismo , Fígado Gorduroso/metabolismo , Fígado Gorduroso/etiologia , Masculino , Transaminases/metabolismo , PPAR alfa/metabolismo , Hepatócitos/metabolismo , Camundongos Endogâmicos C57BLRESUMO
BACKGROUND: Postoperative nausea and vomiting (PONV) is a key driver of unplanned admission and patient satisfaction following surgery. Because traditional risk factors do not completely explain variability in risk, we hypothesize that genetics may contribute to the overall risk for this complication. The objective of this research is to perform a genome-wide association study of PONV, derive a polygenic risk score for PONV, assess associations between the risk score and PONV in a validation cohort, and compare any genetic contributions to known clinical risks for PONV. METHODS: Surgeries with integrated genetic and perioperative data performed under general anesthesia at Michigan Medicine and Vanderbilt University Medical Center were studied. PONV was defined as nausea or emesis occurring and documented in the PACU. In the Discovery Phase, genome-wide association studies were performed on each genetic cohort and the results were meta-analyzed. Next, in the Polygenic Phase, we assessed whether a polygenic score, derived from genome-wide association study in a derivation cohort from Vanderbilt University Medical Center, improved prediction within a validation cohort from Michigan Medicine, as quantified by discrimination (C-statistic) and net reclassification index. RESULTS: Of 64,523 total patients, 5,703 developed PONV (8.8%). We identified 46 genetic variants exceeding P<1x10-5 threshold, occurring with minor allele frequency > 1%, and demonstrating concordant effects in both cohorts. Standardized polygenic score was associated with PONV in a basic model, controlling for age and sex, (aOR 1.027 per standard deviation increase in overall genetic risk, 95% CI 1.001-1.053, P=0.044), a model based on known clinical risks (aOR 1.029, 95% CI 1.003-1.055, P=0.030), and a full clinical regression, controlling for 21 demographic, surgical, and anesthetic factors, (aOR 1.029, 95% CI 1.002-1.056, P=0.033). The addition of polygenic score improved overall discrimination in models based on known clinical risk factors (c-statistic: 0.616 compared to 0.613, P=0.028) and improved net reclassification of 4.6% of cases. CONCLUSION: Standardized polygenic risk was associated with PONV in all three of our models, but the genetic influence was smaller than exerted by clinical risk factors. Specifically, a patient with a polygenic risk score > 1 standard deviation above the mean, has 2-3% greater odds of developing PONV when compared to the baseline population, which is at least an order of magnitude smaller than the increase associated with having prior PONV/motion sickness (55%), having a history of migraines (17%), or being female (83%), and is not clinically significant. Furthermore, the use of a polygenic risk score does not meaningfully improve discrimination compared to clinical risk factors and is not clinically useful.
RESUMO
Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease without effective medications. This study integrated genetic, proteomic, and metabolomic data to identify causation between increased triglyceride (TG)-rich lipoproteins and AAA risk. Three hypertriglyceridemia mouse models were employed to test the hypothesis that increased plasma TG concentrations accelerate AAA development and rupture. In the angiotensin II-infusion AAA model, most Lpl -deficient mice with severely high plasma TG concentrations died of aortic rupture. Consistently, Apoa5 -deficient mice with moderately increased TG concentrations had accelerated AAA development, while human APOC3 transgenic mice with dramatically increased TG concentrations exhibited aortic dissection and rupture. Increased TG concentrations and palmitate inhibited lysyl oxidase maturation. Administration of antisense oligonucleotide targeting Angptl3 profoundly inhibited AAA progression in human APOC3 transgenic mice and Apoe -deficient mice. These results indicate that hypertriglyceridemia is a key contributor to AAA pathogenesis, highlighting the importance of triglyceride-rich lipoprotein management in treating AAA.
RESUMO
Genetic research into atrial fibrillation (AF) and myocardial infarction (MI) has predominantly focused on comparing afflicted individuals with their healthy counterparts. However, this approach lacks granularity, thus overlooking subtleties within patient populations. In this study, we explore the distinction between AF and MI patients who experience only a single disease event and those experiencing recurrent events. Integrating hospital records, questionnaire data, clinical measurements, and genetic data from more than 500,000 HUNT and United Kingdom Biobank participants, we compare both clinical and genetic characteristics between the two groups using genome-wide association studies (GWAS) meta-analyses, phenome-wide association studies (PheWAS) analyses, and gene co-expression networks. We found that the two groups of patients differ in both clinical characteristics and genetic risks. More specifically, recurrent AF patients are significantly younger and have better baseline health, in terms of reduced cholesterol and blood pressure, than single AF patients. Also, the results of the GWAS meta-analysis indicate that recurrent AF patients seem to be at greater genetic risk for recurrent events. The PheWAS and gene co-expression network analyses highlight differences in the functions associated with the sets of single nucleotide polymorphisms (SNPs) and genes for the two groups. However, for MI patients, we found that those experiencing single events are significantly younger and have better baseline health than those with recurrent MI, yet they exhibit higher genetic risk. The GWAS meta-analysis mostly identifies genetic regions uniquely associated with single MI, and the PheWAS analysis and gene co-expression networks support the genetic differences between the single MI and recurrent MI groups. In conclusion, this work has identified novel genetic regions uniquely associated with single MI and related PheWAS analyses, as well as gene co-expression networks that support the genetic differences between the patient subgroups of single and recurrent occurrence for both MI and AF.
RESUMO
Importance: Vascular disease is a treatable contributor to dementia risk, but the role of specific markers remains unclear, making prevention strategies uncertain. Objective: To investigate the causal association between white matter hyperintensity (WMH) burden, clinical stroke, blood pressure (BP), and dementia risk, while accounting for potential epidemiologic biases. Design, Setting, and Participants: This study first examined the association of genetically determined WMH burden, stroke, and BP levels with Alzheimer disease (AD) in a 2-sample mendelian randomization (2SMR) framework. Second, using population-based studies (1979-2018) with prospective dementia surveillance, the genetic association of WMH, stroke, and BP with incident all-cause dementia was examined. Data analysis was performed from July 26, 2020, through July 24, 2022. Exposures: Genetically determined WMH burden and BP levels, as well as genetic liability to stroke derived from genome-wide association studies (GWASs) in European ancestry populations. Main Outcomes and Measures: The association of genetic instruments for WMH, stroke, and BP with dementia was studied using GWASs of AD (defined clinically and additionally meta-analyzed including both clinically diagnosed AD and AD defined based on parental history [AD-meta]) for 2SMR and incident all-cause dementia for longitudinal analyses. Results: In 2SMR (summary statistics-based) analyses using AD GWASs with up to 75â¯024 AD cases (mean [SD] age at AD onset, 75.5 [4.4] years; 56.9% women), larger WMH burden showed evidence for a causal association with increased risk of AD (odds ratio [OR], 1.43; 95% CI, 1.10-1.86; P = .007, per unit increase in WMH risk alleles) and AD-meta (OR, 1.19; 95% CI, 1.06-1.34; P = .008), after accounting for pulse pressure for the former. Blood pressure traits showed evidence for a protective association with AD, with evidence for confounding by shared genetic instruments. In the longitudinal (individual-level data) analyses involving 10â¯699 incident all-cause dementia cases (mean [SD] age at dementia diagnosis, 74.4 [9.1] years; 55.4% women), no significant association was observed between larger WMH burden and incident all-cause dementia (hazard ratio [HR], 1.02; 95% CI, 1.00-1.04; P = .07). Although all exposures were associated with mortality, with the strongest association observed for systolic BP (HR, 1.04; 95% CI, 1.03-1.06; P = 1.9 × 10-14), there was no evidence for selective survival bias during follow-up using illness-death models. In secondary analyses using polygenic scores, the association of genetic liability to stroke, but not genetically determined WMH, with dementia outcomes was attenuated after adjusting for interim stroke. Conclusions: These findings suggest that WMH is a primary vascular factor associated with dementia risk, emphasizing its significance in preventive strategies for dementia. Future studies are warranted to examine whether this finding can be generalized to non-European populations.
Assuntos
Pressão Sanguínea , Doenças de Pequenos Vasos Cerebrais , Demência , Humanos , Doenças de Pequenos Vasos Cerebrais/genética , Doenças de Pequenos Vasos Cerebrais/epidemiologia , Feminino , Masculino , Idoso , Demência/genética , Demência/epidemiologia , Pressão Sanguínea/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Doença de Alzheimer/genética , Doença de Alzheimer/epidemiologia , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/epidemiologia , Fatores de Risco , Predisposição Genética para Doença , Idoso de 80 Anos ou mais , Estudos ProspectivosRESUMO
Trace elements are important for human health but may exert toxic or adverse effects. Mechanisms of uptake, distribution, metabolism, and excretion are partly under genetic control but have not yet been extensively mapped. Here we report a comprehensive multi-element genome-wide association study of 57 essential and non-essential trace elements. We perform genome-wide association meta-analyses of 14 trace elements in up to 6564 Scandinavian whole blood samples, and genome-wide association studies of 43 trace elements in up to 2819 samples measured only in the Trøndelag Health Study (HUNT). We identify 11 novel genetic loci associated with blood concentrations of arsenic, cadmium, manganese, selenium, and zinc in genome-wide association meta-analyses. In HUNT, several genome-wide significant loci are also indicated for other trace elements. Using two-sample Mendelian randomization, we find several indications of weak to moderate effects on health outcomes, the most precise being a weak harmful effect of increased zinc on prostate cancer. However, independent validation is needed. Our current understanding of trace element-associated genetic variants may help establish consequences of trace elements on human health.
Assuntos
Selênio , Oligoelementos , Masculino , Humanos , Oligoelementos/metabolismo , Estudo de Associação Genômica Ampla , Zinco , Selênio/análise , ManganêsRESUMO
BACKGROUND: The extent to which the relationships between clinical risk factors and coronary artery disease (CAD) are altered by CAD polygenic risk score (PRS) is not well understood. Here, we determine whether the interactions between clinical risk factors and CAD PRS further explain risk for incident CAD. METHODS: Participants were of European ancestry from the UK Biobank without prevalent CAD. An externally trained genome-wide CAD PRS was generated and then applied. Clinical risk factors were ascertained at baseline. Cox proportional hazards models were fitted to examine the incident CAD effects of CAD PRS, risk factors, and their interactions. Next, the PRS and risk factors were stratified to investigate the attributable risk of clinical risk factors. FINDINGS: A total of 357,144 individuals of European ancestry without prevalent CAD were included. During a median of 11.1 years of follow-up (interquartile range 10.4-14.1 years), CAD PRS was associated with 1.35-fold (95% confidence interval [CI] 1.332-1.368) risk per SD for incident CAD. The prognostic relevance of the following risk factors was relatively diminished for those with high CAD PRS on a continuous scale: type 2 diabetes (hazard ratio [HR]interaction 0.91, 95% CIinteraction 0.88-0.94), increased body mass index (HRinteraction 0.97, 95% CIinteraction 0.96-0.98), and increased C-reactive protein (HRinteraction 0.98, 95% CIinteraction 0.96-0.99). However, a high CAD PRS yielded joint risk increases with low-density lipoprotein cholesterol (HRinteraction 1.05, 95% CIinteraction 1.04-1.06) and total cholesterol (HRinteraction 1.05, 95% CIinteraction 1.03-1.06). CONCLUSION: The CAD PRS is associated with incident CAD, and its application improves the prognostic relevance of several clinical risk factors. FUNDING: P.N. (R01HL127564, R01HL151152, and U01HG011719) is supported by the National Institutes of Health.
Assuntos
Doença da Artéria Coronariana , Humanos , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/epidemiologia , Masculino , Feminino , Pessoa de Meia-Idade , Fatores de Risco , Reino Unido/epidemiologia , Modelos de Riscos Proporcionais , Idoso , Herança Multifatorial/genética , Estudo de Associação Genômica Ampla , Adulto , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/epidemiologia , População Branca/genética , Incidência , Medição de Risco , Fatores de Risco de Doenças Cardíacas , Estratificação de Risco GenéticoRESUMO
Primary open-angle glaucoma (POAG), a leading cause of irreversible blindness globally, shows disparity in prevalence and manifestations across ancestries. We perform meta-analysis across 15 biobanks (of the Global Biobank Meta-analysis Initiative) (n = 1,487,441: cases = 26,848) and merge with previous multi-ancestry studies, with the combined dataset representing the largest and most diverse POAG study to date (n = 1,478,037: cases = 46,325) and identify 17 novel significant loci, 5 of which were ancestry specific. Gene-enrichment and transcriptome-wide association analyses implicate vascular and cancer genes, a fifth of which are primary ciliary related. We perform an extensive statistical analysis of SIX6 and CDKN2B-AS1 loci in human GTEx data and across large electronic health records showing interaction between SIX6 gene and causal variants in the chr9p21.3 locus, with expression effect on CDKN2A/B. Our results suggest that some POAG risk variants may be ancestry specific, sex specific, or both, and support the contribution of genes involved in programmed cell death in POAG pathogenesis.
Assuntos
Predisposição Genética para Doença , Glaucoma de Ângulo Aberto , Masculino , Feminino , Humanos , Predisposição Genética para Doença/genética , Glaucoma de Ângulo Aberto/genética , Glaucoma de Ângulo Aberto/epidemiologia , Polimorfismo de Nucleotídeo Único , Proliferação de Células , BiologiaRESUMO
Importance: There is increasing recognition that vascular disease, which can be treated, is a key contributor to dementia risk. However, the contribution of specific markers of vascular disease is unclear and, as a consequence, optimal prevention strategies remain unclear. Objective: To disentangle the causal relation of several key vascular traits to dementia risk: (i) white matter hyperintensity (WMH) burden, a highly prevalent imaging marker of covert cerebral small vessel disease (cSVD); (ii) clinical stroke; and (iii) blood pressure (BP), the leading risk factor for cSVD and stroke, for which efficient therapies exist. To account for potential epidemiological biases inherent to late-onset conditions like dementia. Design Setting and Participants: This study first explored the association of genetically determined WMH, BP levels and stroke risk with AD using summary-level data from large genome-wide association studies (GWASs) in a two-sample Mendelian randomization (MR) framework. Second, leveraging individual-level data from large longitudinal population-based cohorts and biobanks with prospective dementia surveillance, the association of weighted genetic risk scores (wGRSs) for WMH, BP, and stroke with incident all-cause-dementia was explored using Cox-proportional hazard and multi-state models. The data analysis was performed from July 26, 2020, through July 24, 2022. Exposures: Genetically determined levels of WMH volume and BP (systolic, diastolic and pulse blood pressures) and genetic liability to stroke. Main outcomes and measures: The summary-level MR analyses focused on the outcomes from GWAS of clinically diagnosed AD (n-cases=21,982) and GWAS additionally including self-reported parental history of dementia as a proxy for AD diagnosis (ADmeta, n-cases=53,042). For the longitudinal analyses, individual-level data of 157,698 participants with 10,699 incident all-cause-dementia were studied, exploring AD, vascular or mixed dementia in secondary analyses. Results: In the two-sample MR analyses, WMH showed strong evidence for a causal association with increased risk of ADmeta (OR, 1.16; 95%CI:1.05-1.28; P=.003) and AD (OR, 1.28; 95%CI:1.07-1.53; P=.008), after accounting for genetically determined pulse pressure for the latter. Genetically predicted BP traits showed evidence for a protective association with both clinically defined AD and ADmeta, with evidence for confounding by shared genetic instruments. In longitudinal analyses the wGRSs for WMH, but not BP or stroke, showed suggestive association with incident all-cause-dementia (HR, 1.02; 95%CI:1.00-1.04; P=.06). BP and stroke wGRSs were strongly associated with mortality but there was no evidence for selective survival bias during follow-up. In secondary analyses, polygenic scores with more liberal instrument definition showed association of both WMH and stroke with all-cause-dementia, AD, and vascular or mixed dementia; associations of stroke, but not WMH, with dementia outcomes were markedly attenuated after adjusting for interim stroke. Conclusion: These findings provide converging evidence that WMH is a leading vascular contributor to dementia risk, which may better capture the brain damage caused by BP (and other etiologies) than BP itself and should be targeted in priority for dementia prevention in the population.
RESUMO
Stroke is the second leading cause of death and disability worldwide. Stroke prevalence varies by sex and ancestry, possibly due to genetic heterogeneity between subgroups. We performed a genome-wide meta-analysis of 16 biobanks across multiple ancestries to study the genetics of ischemic stroke (60,176 cases, 1,310,725 controls) as part of the Global Biobank Meta-analysis Initiative (GBMI) and further combined the results with previously published MegaStroke. Five novel loci for ischemic stroke (LAMC1, CALCRL, PLSCR1, CDKN1A, and SWAP70) were identified after replication in four additional datasets. One previously reported locus showed significant ancestry heterogeneity (ABO), and one showed significant sex heterogeneity (ALDH2). The ALDH2 association was male specific (males p = 1.67e-24, females p = 0.126) and was additionally observed only in the East Asian ancestry (male) samples. These findings emphasize the need for more diverse datasets with large sample sizes to further understand the genetic predisposition of stroke in different ancestry and sex groups.
RESUMO
The current understanding of the genetic determinants of thoracic aortic aneurysms and dissections (TAAD) has largely been informed through studies of rare, Mendelian forms of disease. Here, we conducted a genome-wide association study (GWAS) of TAAD, testing ~25 million DNA sequence variants in 8,626 participants with and 453,043 participants without TAAD in the Million Veteran Program, with replication in an independent sample of 4,459 individuals with and 512,463 without TAAD from six cohorts. We identified 21 TAAD risk loci, 17 of which have not been previously reported. We leverage multiple downstream analytic methods to identify causal TAAD risk genes and cell types and provide human genetic evidence that TAAD is a non-atherosclerotic aortic disorder distinct from other forms of vascular disease. Our results demonstrate that the genetic architecture of TAAD mirrors that of other complex traits and that it is not solely inherited through protein-altering variants of large effect size.
Assuntos
Aneurisma da Aorta Torácica , Dissecção Aórtica , Veteranos , Humanos , Estudo de Associação Genômica Ampla , Linhagem , Aneurisma da Aorta Torácica/genética , Dissecção Aórtica/genéticaRESUMO
AIMS: Complications of coronary artery disease (CAD) represent the leading cause of death among adults globally. This study examined the associations and clinical utilities of genetic, sociodemographic, lifestyle, and clinical risk factors on CAD recurrence. METHODS AND RESULTS: Data were from 7024 UK Biobank middle-aged adults with established CAD at enrolment. Cox proportional hazards regressions modelled associations of age at enrolment, age at first CAD diagnosis, sex, cigarette smoking, physical activity, diet, sleep, Townsend Deprivation Index, body mass index, blood pressure, blood lipids, glucose, lipoprotein(a), C reactive protein, estimated glomerular filtration rate (eGFR), statin prescription, and CAD polygenic risk score (PRS) with first post-enrolment CAD recurrence. Over a median [interquartile range] follow-up of 11.6 [7.2-12.7] years, 2003 (28.5%) recurrent CAD events occurred. The hazard ratio (95% confidence interval [CI]) for CAD recurrence was the most pronounced with current smoking (1.35, 1.13-1.61) and per standard deviation increase in age at first CAD (0.74, 0.67-0.82). Additionally, age at enrolment, CAD PRS, C-reactive protein, lipoprotein(a), glucose, low-density lipoprotein cholesterol, deprivation, sleep quality, eGFR, and high-density lipoprotein (HDL) cholesterol also significantly associated with recurrence risk. Based on C indices (95% CI), the strongest predictors were CAD PRS (0.58, 0.57-0.59), HDL cholesterol (0.57, 0.57-0.58), and age at initial CAD event (0.57, 0.56-0.57). In addition to traditional risk factors, a comprehensive model improved the C index from 0.644 (0.632-0.654) to 0.676 (0.667-0.686). CONCLUSION: Sociodemographic, clinical, and laboratory factors are each associated with CAD recurrence with genetic risk, age at first CAD event, and HDL cholesterol concentration explaining the most.
Assuntos
Doença da Artéria Coronariana , Adulto , Pessoa de Meia-Idade , Humanos , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/genética , HDL-Colesterol , Estudos de Coortes , Fatores de Risco , Proteína C-Reativa , Lipoproteína(a)/genética , Estilo de VidaRESUMO
Background & Aims: Around 20% of patients with non-alcoholic fatty liver disease (NAFLD) are lean. Increasing evidence suggests that lean NAFLD is a unique subtype of the disease. We aimed to explore the metabolic profile, genetic basis, causal risk factors, and clinical sequelae underlying lean NAFLD. Methods: NAFLD was diagnosed by whole liver proton density fat fraction ≥5%. Whole liver proton density fat fraction and hepatic iron were quantified using magnetic resonance imaging in the UK Biobank. Individuals in this study were stratified according to the World Health Organization criteria of obesity, into lean, overweight, and obese. Mediation analysis, Mendelian randomisation analysis, and Bayesian networks were used to identify a risk factor or a clinical sequela of lean/obese NAFLD. Results: Lean NAFLD manifested a distinct metabolic profile, featured by elevated hepatic iron and fasting glucose. Four loci, namely, HFE rs1800562, SLC17A3-SLC17A2-TRIM38 rs9348697, PNPLA3 rs738409, and TM6SF2 rs58542926, were associated with lean NAFLD (p <5 × 10-8). HFE rs1800562 was specifically associated with lean NAFLD and demonstrated a significant mediation effect through elevating hepatic iron. Type 2 diabetes was the most pronounced clinical sequela of lean NAFLD, followed by liver cirrhosis. Conclusions: Our study suggested that HFE plays a potential steatogenic role rather than regulating iron homoeostasis in patients with lean NAFLD. The increased liver iron deposition is associated with lean NAFLD, whereas obese NAFLD is not related to hepatic iron. The clinical management of patients with lean NAFLD shall be concerned with the prevention and treatment of type 2 diabetes and liver cirrhosis. Impact and implications: Lean NAFLD has a distinct natural history from obese NAFLD. This study underscored liver iron content and the genetic variant of the iron homoeostasis gene HFE as major risks of lean NAFLD, in addition to the unique metabolic profile. The development of type 2 diabetes or liver cirrhosis shall be closely monitored and prevented in patients with lean NAFLD.
RESUMO
Background: The recent integration of genomic data with electronic health records has enabled large scale genomic studies on a variety of perioperative complications, yet genome-wide association studies on acute kidney injury have been limited in size or confounded by composite outcomes. Genome-wide association studies can be leveraged to create a polygenic risk score which can then be integrated with traditional clinical risk factors to better predict postoperative complications, like acute kidney injury. Methods: Using integrated genetic data from two academic biorepositories, we conduct a genome-wide association study on cardiac surgery-associated acute kidney injury. Next, we develop a polygenic risk score and test the predictive utility within regressions controlling for age, gender, principal components, preoperative serum creatinine, and a range of patient, clinical, and procedural risk factors. Finally, we estimate additive variant heritability using genetic mixed models. Results: Among 1,014 qualifying procedures at Vanderbilt University Medical Center and 478 at Michigan Medicine, 348 (34.3%) and 121 (25.3%) developed AKI, respectively. No variants exceeded genome-wide significance (p < 5 × 10-8) threshold, however, six previously unreported variants exceeded the suggestive threshold (p < 1 × 10-6). Notable variants detected include: 1) rs74637005, located in the exonic region of NFU1 and 2) rs17438465, located between EVX1 and HIBADH. We failed to replicate variants from prior unbiased studies of post-surgical acute kidney injury. Polygenic risk was not significantly associated with post-surgical acute kidney injury in any of the models, however, case duration (aOR = 1.002, 95% CI 1.000-1.003, p = 0.013), diabetes mellitus (aOR = 2.025, 95% CI 1.320-3.103, p = 0.001), and valvular disease (aOR = 0.558, 95% CI 0.372-0.835, p = 0.005) were significant in the full model. Conclusion: Polygenic risk score was not significantly associated with cardiac surgery-associated acute kidney injury and acute kidney injury may have a low heritability in this population. These results suggest that susceptibility is only minimally influenced by baseline genetic predisposition and that clinical risk factors, some of which are modifiable, may play a more influential role in predicting this complication. The overall impact of genetics in overall risk for cardiac surgery-associated acute kidney injury may be small compared to clinical risk factors.
RESUMO
Polygenic risk scores (PRSs) have been widely explored in precision medicine. However, few studies have thoroughly investigated their best practices in global populations across different diseases. We here utilized data from Global Biobank Meta-analysis Initiative (GBMI) to explore methodological considerations and PRS performance in 9 different biobanks for 14 disease endpoints. Specifically, we constructed PRSs using pruning and thresholding (P + T) and PRS-continuous shrinkage (CS). For both methods, using a European-based linkage disequilibrium (LD) reference panel resulted in comparable or higher prediction accuracy compared with several other non-European-based panels. PRS-CS overall outperformed the classic P + T method, especially for endpoints with higher SNP-based heritability. Notably, prediction accuracy is heterogeneous across endpoints, biobanks, and ancestries, especially for asthma, which has known variation in disease prevalence across populations. Overall, we provide lessons for PRS construction, evaluation, and interpretation using GBMI resources and highlight the importance of best practices for PRS in the biobank-scale genomics era.
RESUMO
BACKGROUND: The 10-year Atherosclerotic Cardiovascular Disease risk score is the standard approach to predict risk of incident cardiovascular events, and recently, addition of coronary artery disease (CAD) polygenic scores has been evaluated. Although age and sex strongly predict the risk of CAD, their interaction with genetic risk prediction has not been systematically examined. This study performed an extensive evaluation of age and sex effects in genetic CAD risk prediction. METHODS: The population-based Norwegian HUNT2 (Trøndelag Health Study 2) cohort of 51 036 individuals was used as the primary dataset. Findings were replicated in the UK Biobank (372 410 individuals). Models for 10-year CAD risk were fitted using Cox proportional hazards, and Harrell concordance index, sensitivity, and specificity were compared. RESULTS: Inclusion of age and sex interactions of CAD polygenic score to the prediction models increased the C-index and sensitivity by accounting for nonadditive effects of CAD polygenic score and likely countering the observed survival bias in the baseline. The sensitivity for females was lower than males in all models including genetic information. We identified a total of 82.6% of incident CAD cases by using a 2-step approach: (1) Atherosclerotic Cardiovascular Disease risk score (74.1%) and (2) the CAD polygenic score interaction model for those in low clinical risk (additional 8.5%). CONCLUSIONS: These findings highlight the importance and complexity of genetic risk in predicting CAD. There is a need for modeling age- and sex-interaction terms with polygenic scores to optimize detection of individuals at high risk, those who warrant preventive interventions. Sex-specific studies are needed to understand and estimate CAD risk with genetic information.
Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Masculino , Feminino , Humanos , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/diagnóstico , Medição de Risco , Fatores de Risco , Fatores SexuaisRESUMO
BACKGROUND: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. RESULTS: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. CONCLUSIONS: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.