Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Microbiol Spectr ; 12(6): e0007124, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38700321

RESUMO

Novel antimicrobial agents are needed to combat antimicrobial resistance. This study tested novel pentafluorosulfanyl-containing triclocarban analogs for their potential antibacterial efficacy. Standard procedures were used to produce pentafluorosulfanyl-containing triclocarban analogs. Twenty new compounds were tested against seven Gram-positive and Gram-negative indicator strains as well as 10 clinical isolates for their antibacterial and antibiofilm activity. Mechanistic investigations focused on damage to cell membrane, oxidizing reduced thiols, iron-sulfur clusters, and oxidative stress to explain the compounds' activity. Safety profiles were assessed using cytotoxicity experiments in eukaryotic cell lines. Following screening, selected components had significantly better antibacterial and antibiofilm activity against Gram-positive bacteria in lower concentrations in comparison to ciprofloxacin and gentamycin. For instance, one compound had a minimum inhibitory concentration of <0.0003 mM, but ciprofloxacin had 0.08 mM. Mechanistic studies show that these novel compounds do not affect reduced thiol content, iron-sulfur clusters, or hydrogen peroxide pathways. Their impact comes from Gram-positive bacterial cell membrane damage. Tests on cell culture toxicity and host component safety showed promise. Novel diarylurea compounds show promise as Gram-positive antimicrobials. These compounds offer prospects for study and optimization. IMPORTANCE: The rise of antibiotic resistance among bacterial pathogens poses a significant threat to global health, underscoring the urgent need for novel antimicrobial agents. This study presents research on a promising class of novel compounds with potent antibacterial properties against Gram-positive bacteria, notably Staphylococcus aureus and MRSA. What sets these novel analogs apart is their superior efficacy at substantially lower concentrations compared with commonly used antibiotics like ciprofloxacin and gentamycin. Importantly, these compounds act by disrupting the bacterial cell membrane, offering a unique mechanism that could potentially circumvent existing resistance mechanisms. Preliminary safety assessments also highlight their potential for therapeutic use. This study not only opens new avenues for combating antibiotic-resistant infections but also underscores the importance of innovative chemical approaches in addressing the global antimicrobial resistance crisis.


Assuntos
Antibacterianos , Carbanilidas , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana , Carbanilidas/farmacologia , Carbanilidas/química , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Biofilmes/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Ciprofloxacina/farmacologia
2.
Science ; 381(6662): eabq5202, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37676943

RESUMO

Kupffer cells (KCs) are localized in liver sinusoids but extend pseudopods to parenchymal cells to maintain their identity and serve as the body's central bacterial filter. Liver cirrhosis drastically alters vascular architecture, but how KCs adapt is unclear. We used a mouse model of liver fibrosis and human tissue to examine immune adaptation. Fibrosis forced KCs to lose contact with parenchymal cells, down-regulating "KC identity," which rendered them incapable of clearing bacteria. Commensals stimulated the recruitment of monocytes through CD44 to a spatially distinct vascular compartment. There, recruited monocytes formed large aggregates of multinucleated cells (syncytia) that expressed phenotypical KC markers and displayed enhanced bacterial capture ability. Syncytia formed via CD36 and were observed in human cirrhosis as a possible antimicrobial defense that evolved with fibrosis.


Assuntos
Infecções Transmitidas por Sangue , Células Gigantes , Células de Kupffer , Cirrose Hepática , Animais , Humanos , Camundongos , Células Gigantes/imunologia , Células Gigantes/microbiologia , Células de Kupffer/imunologia , Células de Kupffer/microbiologia , Cirrose Hepática/imunologia , Cirrose Hepática/microbiologia , Cirrose Hepática/patologia , Infecções Transmitidas por Sangue/imunologia , Modelos Animais de Doenças
3.
Biomedicines ; 10(8)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36009351

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) infections pose a global health threat, especially with the continuous development of antibiotic resistance. As an opportunistic pathogen, MRSA infections have a high mortality rate worldwide. Although classically described as an extracellular pathogen, many studies have shown over the past decades that MRSA also has an intracellular aspect to its infectious cycle, which has been observed in vitro in both non-professional as well as professional phagocytes. In vivo, MRSA has been shown to establish an intracellular niche in liver Kupffer cells upon bloodstream infection. The staphylococci have evolved various evasion strategies to survive the antimicrobial environment of phagolysosomes and use these compartments to hide from immune cells and antibiotics. Ultimately, the host cells get overwhelmed by replicating bacteria, leading to cell lysis and bacterial dissemination. In this review, we describe the different intracellular aspects of MRSA infection and briefly mention S. aureus evasion strategies. We discuss how this intracellular niche of bacteria may assist in antibiotic tolerance development, and lastly, we describe various new antibacterial strategies that target the intracellular bacterial niche.

4.
Nature ; 609(7925): 166-173, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35948634

RESUMO

During infection, inflammatory monocytes are thought to be key for bacterial eradication, but this is hard to reconcile with the large numbers of neutrophils that are recruited for each monocyte that migrates to the afflicted tissue, and the much more robust microbicidal functions of the neutrophils. However, unlike neutrophils, monocytes have the capacity to convert to situationally specific macrophages that may have critical functions beyond infection control1,2. Here, using a foreign body coated with Staphylococcus aureus and imaging over time from cutaneous infection to wound resolution, we show that monocytes and neutrophils are recruited in similar numbers with low-dose infection but not with high-dose infection, and form a localization pattern in which monocytes surround the infection site, whereas neutrophils infiltrate it. Monocytes did not contribute to bacterial clearance but converted to macrophages that persisted for weeks after infection, regulating hypodermal adipocyte expansion and production of the adipokine hormone leptin. In infected monocyte-deficient mice there was increased persistent hypodermis thickening and an elevated leptin level, which drove overgrowth of dysfunctional blood vasculature and delayed healing, with a thickened scar. Ghrelin, which opposes leptin function3, was produced locally by monocytes, and reduced vascular overgrowth and improved healing post-infection. In sum, we find that monocytes function as a cellular rheostat by regulating leptin levels and revascularization during wound repair.


Assuntos
Leptina , Monócitos , Neovascularização Fisiológica , Infecções Estafilocócicas , Staphylococcus aureus , Cicatrização , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Cicatriz , Grelina/metabolismo , Leptina/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Monócitos/citologia , Monócitos/metabolismo , Neutrófilos/citologia , Neutrófilos/imunologia , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/fisiologia
5.
Nat Commun ; 13(1): 3279, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672409

RESUMO

Invariant NKT (iNKT) cells comprise a heterogeneous group of non-circulating, tissue-resident T lymphocytes that recognize glycolipids, including alpha-galactosylceramide (αGalCer), in the context of CD1d, but whether peripheral iNKT cell subsets are terminally differentiated remains unclear. Here we show that mouse and human liver-resident αGalCer/CD1d-binding iNKTs largely correspond to a novel Zbtb16+Tbx21+Gata3+MaflowRorc- subset that exhibits profound transcriptional, phenotypic and functional plasticity. Repetitive in vivo encounters of these liver iNKT (LiNKT) cells with intravenously delivered αGalCer/CD1d-coated nanoparticles (NP) trigger their differentiation into immunoregulatory, IL-10+IL-21-producing Zbtb16highMafhighTbx21+Gata3+Rorc- cells, termed LiNKTR1, expressing a T regulatory type 1 (TR1)-like transcriptional signature. This response is LiNKT-specific, since neither lung nor splenic tissue-resident iNKT cells from αGalCer/CD1d-NP-treated mice produce IL-10 or IL-21. Additionally, these LiNKTR1 cells suppress autoantigen presentation, and recognize CD1d expressed on conventional B cells to induce IL-10+IL-35-producing regulatory B (Breg) cells, leading to the suppression of liver and pancreas autoimmunity. Our results thus suggest that LiNKT cells are plastic for further functional diversification, with such plasticity potentially targetable for suppressing tissue-specific inflammatory phenomena.


Assuntos
Linfócitos B Reguladores , Células T Matadoras Naturais , Animais , Antígenos CD1d/metabolismo , Autoimunidade , Linfócitos B Reguladores/metabolismo , Galactosilceramidas , Interleucina-10/metabolismo , Fígado/metabolismo , Camundongos
6.
Biomaterials ; 287: 121632, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35728409

RESUMO

Infections with Staphylococcus aureus (S. aureus) have been reported from various organs ranging from asymptomatic colonization to severe infections and sepsis. Although considered an extracellular pathogen, S. aureus can invade and persist in professional phagocytes such as monocytes and macrophages. Its capability to persist and manipulate macrophages is considered a critical step to evade host antimicrobial reactions. We leveraged a recently established human liver-on-chip model to demonstrate that S. aureus specifically targets macrophages as essential niche facilitating bacterial persistence and phenotype switching to small colony variants (SCVs). In vitro, M2 polarization was found to favor SCV-formation and was associated with increased intracellular bacterial loads in macrophages, increased cell death, and impaired recruitment of circulating monocytes to sites of infection. These findings expand the knowledge about macrophage activation in the liver and its impact on bacterial persistence and dissemination in the course of infection.

8.
JCI Insight ; 7(2)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34908534

RESUMO

Acute respiratory distress syndrome (ARDS) is a life-threatening syndrome, constituted by respiratory failure and diffuse alveolar damage that results from dysregulated local and systemic immune activation, causing pulmonary vascular, parenchymal, and alveolar damage. SARS-CoV-2 infection has become the dominant cause of ARDS worldwide, and emerging evidence implicates neutrophils and their cytotoxic arsenal of effector functions as central drivers of immune-mediated lung injury in COVID-19 ARDS. However, key outstanding questions are whether COVID-19 drives a unique program of neutrophil activation or effector functions that contribute to the severe pathogenesis of this pandemic illness and whether this unique neutrophil response can be targeted to attenuate disease. Using a combination of high-dimensional single-cell analysis and ex vivo functional assays of neutrophils from patients with COVID-19 ARDS, compared with those with non-COVID ARDS (caused by bacterial pneumonia), we identified a functionally distinct landscape of neutrophil activation in COVID-19 ARDS that was intrinsically programmed during SARS-CoV-2 infection. Furthermore, neutrophils in COVID-19 ARDS were functionally primed to produce high amounts of neutrophil extracellular traps. Surprisingly, this unique pathological program of neutrophil priming escaped conventional therapy with dexamethasone, thereby revealing a promising target for adjunctive immunotherapy in severe COVID-19.


Assuntos
COVID-19/imunologia , Armadilhas Extracelulares/imunologia , Ativação de Neutrófilo , Neutrófilos/imunologia , Síndrome do Desconforto Respiratório/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neutrófilos/patologia , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/patologia , Síndrome do Desconforto Respiratório/patologia , Índice de Gravidade de Doença
9.
Redox Biol ; 49: 102225, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34959099

RESUMO

BACKGROUND: Neutrophils play a role in innate immunity and are critical for clearance of Staphylococcus aureus. Current understanding of neutrophil bactericidal effects is that NADPH oxidase produces reactive oxygen species (ROS), mediating bacterial killing. Neutrophils also contain numerous mitochondria; since these organelles lack oxidative metabolism, their function is unclear. We hypothesize that mitochondria in human neutrophils contribute to the bactericidal capacity of S. aureus. METHODS: and Findings: Using human neutrophils isolated from healthy volunteers (n = 13; 7 females, 6 males), we show that mitochondria are critical in the immune response to S. aureus. Using live-cell and fixed confocal, and transmission electron microscopy, we show mitochondrial tagging of bacteria prior to ingestion and surrounding of phagocytosed bacteria immediately upon engulfment. Further, we demonstrate that mitochondria are ejected from intact neutrophils and engage bacteria during vital NETosis. Inhibition of the mitochondrial electron transport chain at Complex III, but not Complex I, attenuates S. aureus killing by 50 ± 7%, comparable to the NADPH oxidase inhibitor apocynin. Similarly, mitochondrial ROS scavenging using MitoTEMPO attenuates bacterial killing 112 ± 60% versus vehicle control. Antimycin A treatment also reduces mitochondrial ROS production by 50 ± 12% and NETosis by 53 ± 5%. CONCLUSIONS: We identify a previously unrecognized role for mitochondria in human neutrophils in the killing of S. aureus. Inhibition of electron transport chain Complex III significantly impairs antimicrobial activity. This is the first demonstration that vital NETosis, an early event in the antimicrobial response, occurring within 5 min of bacterial exposure, depends on the function of mitochondrial Complex III. Mitochondria join NADPH oxidase as bactericidal ROS generators that mediate the bactericidal activities of human neutrophils.


Assuntos
Neutrófilos , Staphylococcus aureus , Feminino , Humanos , Masculino , Mitocôndrias/metabolismo , NADPH Oxidases/metabolismo , Neutrófilos/metabolismo , Fagocitose , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus/metabolismo
10.
PLoS Pathog ; 17(9): e1009880, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34529737

RESUMO

Staphylococcus aureus is a human commensal organism and opportunist pathogen, causing potentially fatal disease. The presence of non-pathogenic microflora or their components, at the point of infection, dramatically increases S. aureus pathogenicity, a process termed augmentation. Augmentation is associated with macrophage interaction but by a hitherto unknown mechanism. Here, we demonstrate a breadth of cross-kingdom microorganisms can augment S. aureus disease and that pathogenesis of Enterococcus faecalis can also be augmented. Co-administration of augmenting material also forms an efficacious vaccine model for S. aureus. In vitro, augmenting material protects S. aureus directly from reactive oxygen species (ROS), which correlates with in vivo studies where augmentation restores full virulence to the ROS-susceptible, attenuated mutant katA ahpC. At the cellular level, augmentation increases bacterial survival within macrophages via amelioration of ROS, leading to proliferation and escape. We have defined the molecular basis for augmentation that represents an important aspect of the initiation of infection.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Macrófagos/imunologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/imunologia , Simbiose/fisiologia , Animais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Sepse/imunologia , Sepse/microbiologia , Infecções Estafilocócicas/imunologia , Peixe-Zebra
11.
Sci Rep ; 11(1): 15357, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321507

RESUMO

Staphylococcus aureus virulence has been associated with the production of phenol-soluble modulins (PSMs). These PSMs have distinct virulence functions and are known to activate, attract and lyse neutrophils. These PSM-associated biological functions are inhibited by lipoproteins in vitro. We set out to address whether lipoproteins neutralize staphylococcal PSM-associated virulence in experimental animal models. Serum from both LCAT an ABCA1 knockout mice strains which are characterised by near absence of high-density lipoprotein (HDL) levels, was shown to fail to protect against PSM-induced neutrophil activation and lysis in vitro. Importantly, PSM-induced peritonitis in LCAT-/- mice resulted in increased lysis of resident peritoneal macrophages and enhanced neutrophil recruitment into the peritoneal cavity. Notably, LCAT-/- mice were more likely to succumb to staphylococcal bloodstream infections in a PSM-dependent manner. Plasma from homozygous carriers of ABCA1 variants characterized by very low HDL-cholesterol levels, was found to be less protective against PSM-mediated biological functions compared to healthy humans. Therefore, we conclude that lipoproteins present in blood can protect against staphylococcal PSMs, the key virulence factor of community-associated methicillin resistant S. aureus.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/genética , Lipoproteínas HDL/sangue , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Infecções Estafilocócicas/genética , Animais , Toxinas Bacterianas/genética , Biofilmes/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Lipoproteínas HDL/genética , Camundongos , Camundongos Knockout , Neutrófilos/microbiologia , Infecções Estafilocócicas/sangue , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidade , Fatores de Virulência/genética
12.
Cell Rep ; 36(4): 109462, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34320352

RESUMO

Skin is one of the most common sites of host immune response against Staphylococcus aureus infection. Here, through a combination of in vitro assays, mouse models, and intravital imaging, we find that S. aureus immune evasion in skin is controlled by a cascade composed of the ArlRS two-component regulatory system and its downstream effector, MgrA. S. aureus lacking either ArlRS or MgrA is less virulent and unable to form correct abscess structure due to de-repression of a giant surface protein, Ebh. These S. aureus mutants also have decreased expression of immune evasion factors (leukocidins, chemotaxis-inhibitory protein of S. aureus [CHIPS], staphylococcal complement inhibitor [SCIN], and nuclease) and are unable to kill neutrophils, block their chemotaxis, degrade neutrophil extracellular traps, and survive direct neutrophil attack. The combination of disrupted abscess structure and reduced immune evasion factors makes S. aureus susceptible to host defenses. ArlRS and MgrA are therefore the main regulators of S. aureus immune evasion and promising treatment targets.


Assuntos
Proteínas de Bactérias/metabolismo , Evasão da Resposta Imune , Pele/microbiologia , Pele/patologia , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/imunologia , Animais , Aderência Bacteriana , Morte Celular , Quimiotaxia , Armadilhas Extracelulares/metabolismo , Imageamento Tridimensional , Camundongos Endogâmicos C57BL , Modelos Biológicos , Mutação/genética , Neutrófilos/metabolismo , Fagocitose , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus/patogenicidade , Virulência , alfa-Defensinas/metabolismo
13.
Pathogens ; 10(4)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33805913

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) first emerged after methicillin was introduced to combat penicillin resistance, and its prevalence in Canada has increased since the first MRSA outbreak in the early 1980s. We reviewed the existing literature on MRSA prevalence in Canada over time and in diverse populations across the country. MRSA prevalence increased steadily in the 1990s and 2000s and remains a public health concern in Canada, especially among vulnerable populations, such as rural, remote, and Indigenous communities. Antibiotic resistance patterns and risk factors for MRSA infection were also reported. All studies reported high susceptibility (>85%) to trimethoprim-sulfamethoxazole, with no significant resistance reported for vancomycin, linezolid, or rifampin. While MRSA continues to have susceptibility to several antibiotics, the high and sometimes variable resistance rates to other drugs underscores the importance of antimicrobial stewardship. Risk factors for high MRSA infection rates related to infection control measures, low socioeconomic status, and personal demographic characteristics were also reported. Additional surveillance, infection control measures, enhanced anti-microbial stewardship, and community education programs are necessary to decrease MRSA prevalence and minimize the public health risk posed by this pathogen.

14.
Cell Rep ; 34(13): 108919, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33789099

RESUMO

Neutrophils with immunoregulatory properties, also referred to as type-2 neutrophils (N2), myeloid-derived suppressor cells (MDSCs), or tumor-associated neutrophils (TANs), comprise a heterogeneous subset of cells that arise from unknown precursors in response to poorly understood cues. Here, we find that, in several models of liver autoimmunity, pharmacologically induced, autoantigen-specific T regulatory type-1 (TR1) cells and TR1-cell-induced B regulatory (Breg) cells use five immunoregulatory cytokines to coordinately recruit neutrophils into the liver and program their transcriptome to generate regulatory neutrophils. The liver-associated neutrophils from the treated mice, unlike their circulating counterparts or the liver neutrophils of sick mice lacking antigen-specific TR1 cells, are proliferative, can transfer disease protection to immunocompromised hosts engrafted with pathogenic effectors, and blunt antigen-presentation and local autoimmune responses via cathelin-related anti-microbial peptide (CRAMP), a cathelicidin, in a CRAMP-receptor-dependent manner. These results, thus, identify antigen-specific regulatory T cells as drivers of tissue-restricted regulatory neutrophil formation and CRAMP as an effector of regulatory neutrophil-mediated immunoregulation.


Assuntos
Autoimunidade , Catelicidinas/metabolismo , Fígado/imunologia , Linfócitos T Reguladores/imunologia , Animais , Antígenos/metabolismo , Linfócitos B Reguladores/imunologia , Polaridade Celular/genética , Citocinas/metabolismo , Regulação da Expressão Gênica , Inflamação/patologia , Células de Kupffer/metabolismo , Fígado/patologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Mitose/genética , Células Supressoras Mieloides/imunologia , Infiltração de Neutrófilos , Neutrófilos , Especificidade de Órgãos , Fenótipo , Transcrição Gênica
15.
Hepatology ; 73(5): 1967-1984, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32761929

RESUMO

BACKGROUND AND AIMS: Kupffer cells (KCs) are the resident intravascular phagocyte population of the liver and critical to the capture and killing of bacteria. Calcineurin/nuclear factor of activated T cells (NFAT) inhibitors (CNIs) such as tacrolimus are used to prevent rejection in solid organ transplant recipients. Although their effect on lymphocytes has been studied extensively, there are limited experimental data about if and how CNIs shape innate immunity, and whether this contributes to the higher rates of infection observed in patients taking CNIs. APPROACH AND RESULTS: Here, we investigated the impact of tacrolimus treatment on innate immunity and, more specifically, on the capability of Kupffer cells (KCs) to fight infections. Retrospective analysis of data of >2,700 liver transplant recipients showed that taking calcineurin inhibitors such as tacrolimus significantly increased the likelihood of Staphylococcus aureus infection. Using a mouse model of acute methicillin-resistant S. aureus (MRSA) bacteremia, most bacteria were sequestered in the liver and we found that bacteria were more likely to disseminate and kill the host in tacrolimus-treated mice. Using imaging, we unveiled the mechanism underlying this observation: the reduced capability of KCs to capture, phagocytose, and destroy bacteria in tacrolimus-treated animals. Furthermore, in a gene expression analysis of infected KCs, the triggering receptor expressed on myeloid cells 1 (TREM1) pathway was the one with the most significant down-regulation after tacrolimus treatment. TREM1 inhibition likewise inhibited KC bacteria capture. TREM1 levels on neutrophils as well as the overall neutrophil response after infection were unaffected by tacrolimus treatment. CONCLUSIONS: Our results indicate that tacrolimus treatment has a significant impact directly on KCs and on TREM1, thereby compromising their capacity to fend off infections.


Assuntos
Bacteriemia/etiologia , Imunossupressores/efeitos adversos , Células de Kupffer/efeitos dos fármacos , Transplante de Órgãos/efeitos adversos , Infecções Estafilocócicas/etiologia , Tacrolimo/efeitos adversos , Animais , Feminino , Citometria de Fluxo , Humanos , Imunossupressores/uso terapêutico , Células de Kupffer/fisiologia , Masculino , Staphylococcus aureus Resistente à Meticilina , Camundongos , Pessoa de Meia-Idade , Transplante de Órgãos/métodos , Fagocitose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Estudos Retrospectivos , Tacrolimo/uso terapêutico
16.
Hepatology ; 74(1): 296-311, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33219516

RESUMO

BACKGROUND AND AIMS: Bacterial infections are common and severe in cirrhosis, but their pathogenesis is poorly understood. Dysfunction of liver macrophages may play a role, but information about their function in cirrhosis is limited. Our aims were to investigate the specific profile and function of liver macrophages in cirrhosis and their contribution to infections. Macrophages from human cirrhotic livers were characterized phenotypically by transcriptome analysis and flow cytometry; function was assessed in vivo by single photon emission computerized tomography in patients with cirrhosis. Serum levels of specific proteins and expression in peripheral monocytes were determined by ELISA and flow cytometry. In vivo phagocytic activity of liver macrophages was measured by spinning disk intravital microscopy in a mouse model of chronic liver injury. APPROACH AND RESULTS: Liver macrophages from patients with cirrhosis overexpressed proteins related to immune exhaustion, such as programmed death ligand 1 (PD-L1), macrophage receptor with collagenous structure (MARCO), and CD163. In vivo phagocytic activity of liver macrophages in patients with cirrhosis was markedly impaired. Monocytes from patients with cirrhosis showed overexpression of PD-L1 that paralleled disease severity, correlated with its serum levels, and was associated with increased risk of infections. Blockade of PD-L1 with anti-PD-L1 antibody caused a shift in macrophage phenotype toward a less immunosuppressive profile, restored liver macrophage in vivo phagocytic activity, and reduced bacterial dissemination. CONCLUSION: Liver cirrhosis is characterized by a remarkable impairment of phagocytic function of macrophages associated with an immunosuppressive transcriptome profile. The programmed cell death receptor 1/PD-L1 axis plays a major role in the impaired activity of liver macrophages. PD-L1 blockade reverses the immune suppressive profile and increases antimicrobial activity of liver macrophages in cirrhosis.


Assuntos
Antígeno B7-H1/metabolismo , Infecções Bacterianas/imunologia , Inibidores de Checkpoint Imunológico/administração & dosagem , Cirrose Hepática/imunologia , Macrófagos/imunologia , Idoso , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Infecções Bacterianas/prevenção & controle , Biópsia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Humanos , Fígado/imunologia , Fígado/patologia , Cirrose Hepática/complicações , Cirrose Hepática/diagnóstico , Cirrose Hepática/patologia , Macrófagos/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Fagocitose , Cultura Primária de Células , Receptores de Superfície Celular/metabolismo , Receptores Imunológicos/metabolismo , Índice de Gravidade de Doença
17.
Oncoimmunology ; 9(1): 1751561, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32363124

RESUMO

Staphylococcus aureus and its toxins have been linked to disease progression and mortality in advanced stages of cutaneous T-cell lymphoma (CTCL). CD8+ T cells play a crucial role in anti-cancer responses and high CD8+ T cell numbers in tumor lesions are associated with a favorable prognosis in CTCL. Here, we show that CD8+ T cells from both healthy donors and Sézary syndrome patients are highly susceptible to cell death induced by Staphylococcal alpha-toxin, whereas malignant T cells are not. Importantly, alpha-toxin almost completely blocks cytotoxic killing of CTCL tumor cells by peptide-specific CD8+ T cells, leading to their escape from induced cell death and continued proliferation. These findings suggest that alpha-toxin may favor the persistence of malignant CTCL cells in vivo by inhibiting CD8+ T cell cytotoxicity. Thus, we propose a novel mechanism by which colonization with Staphylococcus aureus may contribute to cancer immune evasion and disease progression in CTCL.


Assuntos
Toxinas Bacterianas , Linfócitos T CD8-Positivos , Proteínas Hemolisinas , Linfoma Cutâneo de Células T , Neoplasias Cutâneas , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Humanos , Leucócitos Mononucleares , Linfoma Cutâneo de Células T/imunologia , Neoplasias Cutâneas/imunologia , Staphylococcus aureus
18.
Nat Commun ; 11(1): 1329, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165624

RESUMO

While the ontogeny and recruitment of the intestinal monocyte/macrophage lineage has been studied extensively, their precise localization and function has been overlooked. Here we show by imaging the murine small and large intestines in steady-state that intestinal CX3CR1+ macrophages form an interdigitated network intimately adherent to the entire mucosal lamina propria vasculature. The macrophages form contacts with each other, which are disrupted in the absence of microbiome, monocyte recruitment (Ccr2-/-), or monocyte conversion (Nr4a1-/-). In dysbiosis, gaps exist between the perivascular macrophages correlating with increased bacterial translocation from the lamina propria into the bloodstream. The recruitment of monocytes and conversion to macrophages during intestinal injury is also dependent upon CCR2, Nr4a1 and the microbiome. These findings demonstrate a relationship between microbiome and the maturation of lamina propria perivascular macrophages into a tight anatomical barrier that might function to prevent bacterial translocation. These cells are also critical for emergency vascular repair.


Assuntos
Microbioma Gastrointestinal , Mucosa Intestinal/irrigação sanguínea , Mucosa Intestinal/citologia , Macrófagos/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Animais , Receptor 1 de Quimiocina CX3C/metabolismo , Colite/patologia , Sulfato de Dextrana , Disbiose/patologia , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Receptores CCR2/metabolismo , Cicatrização
19.
Oncoimmunology ; 8(11): e1641387, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31646088

RESUMO

Staphylococcus aureus is implicated in disease progression in cutaneous T-cell lymphoma (CTCL). Here, we demonstrate that malignant T cell lines derived from CTCL patients as well as primary malignant CD4+ T cells from Sézary syndrome patients are considerably more resistant to alpha-toxin-induced cell death than their non-malignant counterparts. Thus, in a subset of Sézary syndrome patients the ratio between malignant and non-malignant CD4+ T cells increases significantly following exposure to alpha-toxin. Whereas toxin-induced cell death is ADAM10 dependent in healthy CD4+ T cells, resistance to alpha-toxin in malignant T cells involves both downregulation of ADAM10 as well as other resistance mechanisms. In conclusion, we provide first evidence that Staphylococcus aureus derived alpha-toxin can tilt the balance between malignant and non-malignant CD4+ T cells in CTCL patients. Consequently, alpha-toxin may promote disease progression through positive selection of malignant CD4+ T cells, identifying alpha-toxin as a putative drug target in CTCL.

20.
J Clin Invest ; 129(11): 4643-4656, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31545300

RESUMO

Essentially all Staphylococcus aureus (S. aureus) bacteria that gain access to the circulation are plucked out of the bloodstream by the intravascular macrophages of the liver - the Kupffer cells. It is also thought that these bacteria are disseminated via the bloodstream to other organs. Our data show that S. aureus inside Kupffer cells grew and escaped across the mesothelium into the peritoneal cavity and immediately infected GATA-binding factor 6-positive (GATA6+) peritoneal cavity macrophages. These macrophages provided a haven for S. aureus, thereby delaying the neutrophilic response in the peritoneum by 48 hours and allowing dissemination to various peritoneal and retroperitoneal organs including the kidneys. In mice deficient in GATA6+ peritoneal macrophages, neutrophils infiltrated more robustly and reduced S. aureus dissemination. Antibiotics administered i.v. did not prevent dissemination into the peritoneum or to the kidneys, whereas peritoneal administration of vancomycin (particularly liposomal vancomycin with optimized intracellular penetrance capacity) reduced kidney infection and mortality, even when administered 24 hours after infection. These data indicate that GATA6+ macrophages within the peritoneal cavity are a conduit of dissemination for i.v. S. aureus, and changing the route of antibiotic delivery could provide a more effective treatment for patients with peritonitis-associated bacterial sepsis.


Assuntos
Fator de Transcrição GATA6/imunologia , Macrófagos Peritoneais/imunologia , Peritonite/imunologia , Sepse/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Animais , Feminino , Macrófagos Peritoneais/microbiologia , Macrófagos Peritoneais/patologia , Masculino , Camundongos , Peritonite/microbiologia , Peritonite/patologia , Sepse/microbiologia , Sepse/patologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/patologia , Vancomicina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA