Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38068130

RESUMO

In order to shift the light emission of nitride quantum structures towards the red color, the technological problem of low In incorporation in InGaN-based heterostructures has to be solved. To overcome this problem, we consider superlattices grown on InGaN buffers with different In content. Based on the comparison of the calculated ab initio superlattice band gaps with the photoluminescence emission energies obtained from the measurements on the specially designed samples grown by metal-organic vapor phase epitaxy, it is shown that by changing the superlattice parameters and the composition of the buffer structures, the light emission can be shifted to lower energies by about 167 nm (0.72 eV) in comparison to the case of a similar type of superlattices grown on GaN substrate. The importance of using superlattices to achieve red emission and the critical role of the InGaN buffer are demonstrated.

2.
Opt Express ; 28(20): 30299-30308, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-33114912

RESUMO

A novel approach to fabricate efficient nitride light-emitting diodes (LEDs) grown on gallium polar surface operating at cryogenic temperatures is presented. We investigate and compare LEDs with standard construction with structures where p-n junction field is inverted through the use of bottom tunnel junction (BTJ). BTJ LEDs show improved turn on voltage, reduced parasitic recombination and increased quantum efficiency at cryogenic temperatures. This is achieved by moving to low resistivity n-type contacts and nitrogen polar-like built-in field with respect to current flow. It inhibits the electron overflow past quantum wells and improves hole injection even at T=12K. Therefore, as cryogenic light sources, BTJ LEDs offer significantly enhanced performance over standard LEDs.

3.
Opt Lett ; 45(15): 4332-4335, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32735291

RESUMO

We have fabricated tunnel-junction InGaN micro-LEDs using plasma-assisted molecular beam epitaxy technology, with top-down processing on GaN substrates. Devices have diameters between 5 µm and 100 µm. All of the devices emit light at 450 nm at a driving current density of about 10Acm-2. We demonstrate that within micro-LEDs ranging in size from 100 µm down to 5 µm, the properties of these devices, both electrical and optical, are fully scalable. That means we can reproduce all electro-optical characteristics using a single set of parameters. Most notably, we do not observe any enhancement of non-radiative recombination for the smallest devices. We assign this result to a modification of the fabrication process, i.e., replacement of deep dry etching by a tunnel junction for the current confinement. These devices show excellent thermal stability of their light emission characteristics, enabling operation at current densities up to 1kAcm-2.

4.
Opt Express ; 26(6): 7351-7357, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29609291

RESUMO

In this paper we demonstrate 450 nm (Al,In)GaN graded index separate confinement heterostructure travelling wave optical amplifier with a double 'j-shape' waveguide. The length of the amplifier is 2.5 mm and the width of the ridge is 2.5 µm. The active region consists of three 3.5 nm thick quantum wells. The measured optical gain under CW operation in room temperature exceeded 29 dB for low power input signals. The saturation output power was 21 dBm for 400 mA driving current. The demonstrated amplifier, provides a good solution for the blue light, all nitrides, and master oscillator power amplifier systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA