RESUMO
The purpose of this study was to determine the relationship between triptans (sumatriptan, rizatriptan, and zolmitriptan) and cardiovascular (CV) adverse events with data from the FDA Adverse Event Reporting System (FAERS). FAERS database was used to collect data on triptans from 1997 to 2023. Disproportionality methods were utilized to quantify triptan-associated CV events and to identify the potential risk. The reporting odds ratio was used to identify the risk signals. CV outcomes related to age, sex, clinical results, and other factors were also examined for triptans; 820 reports involving the triptans were recognized as CV adverse events out of total of 12 699 reports that were gathered from on FAERS database. Women reported more CV adverse events with rizatriptan and zolmitriptan as compared to men. The CV adverse event risk was highest among individuals aged 18-64. Clinical outcome analysis showed that sumatriptan carries a higher CV risk than rizatriptan and zolmitriptan, and most deaths and serious cases have been documented for sumatriptan. The patients prescribed sumatriptan or zolmitriptan were at a higher risk of reporting CV events for chest pain and chest discomfort, compared to rizatriptan. This finding may provide support for the clinical observation and risk evaluation of triptan treatment.
RESUMO
Norepinephrine-dopamine reputake inhibitors (NDRIs), including bupropion, methylphenidate, atomoxetine, and reboxetine, are commonly prescribed for psychiatric disorders such as narcolepsy, attention-deficit/hyperactivity disorder, and depression. Cardiovascular adverse events have been reported to the FDA despite their effectiveness. This pharmacovigilance study analyzed cardiovascular adverse events associated with NDRIs using the FDA Adverse Event Reporting System data from January 2004 to December 2021. A retrospective analysis of adverse event reports was conducted, employing time-trend analysis and disproportionality evaluation to assess cardiovascular risks. Bupropion had the greatest reported odds ratios (RORs) for tachycardia (ROR = 4.2, 95% CI: 4.0-4.4) and hypertension (ROR = 3.5, 95% CI: 3.3-3.7), while methylphenidate showed greater ROR for arrhythmias (ROR = 2.8, 95% CI: 2.6-3.0) and palpitations (ROR = 3.1, 95% CI: 2.9-3.3). Reboxetine had signals for palpitations (ROR = 3.0, 95% CI: 2.8-3.2) and myocardial infarction (ROR = 2.7, 95% CI: 2.5-2.9), whereas atomoxetine revealed signals for hypertension (ROR = 2.9, 95% CI: 2.7-3.1) and syncope (ROR = 2.5, 95% CI: 2.3-2.7). Time-trend analysis revealed temporal variability in the cardiovascular risks connected with NDRIs. Our research elucidates cardiovascular safety profiles for NDRIs, highlighting the necessity for continuous pharmacovigilance. The observed variations in adverse events emphasize the need for ongoing surveillance to mitigate potential cardiovascular risks and enhance patient safety and treatment outcomes.
RESUMO
Lung cancer is still a global health challenge in terms of high incidence, morbidity, and mortality. Recent scientific studies have determined that pyroptosis, a highly inflammatory form of programmed cell death, can be identified as a potential lung cancer therapeutic target. The NLRP3 inflammasome acts as a critical mediator in this process and, upon activation, activates multiprotein complex formation as well as caspase-1 activation. This process, triggered by a release of pro-inflammatory cytokines, results in pyroptotic cell death. Also, the relationship between the NLRP3 inflammasome and lung cancer was justified by its influence on tumour growth or metastasis. The molecular pathways produce progenitive mediators and remake the tissue. Finally, targeting NLRP3 inflammasome for pyroptosis induction and inhibition of its activation appears to be a promising lung cancer treatment approach. This technique makes cancer treatment more promising and personalized. This review explores the role of NLRP3 inflammasome activation and its possibilities in lung cancer treatment.
Assuntos
Inflamassomos , Neoplasias Pulmonares , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/fisiologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Inflamassomos/metabolismo , AnimaisRESUMO
The use of nanoparticles (NPs) has emerged as a potential tool for safe and effective drug delivery. In the present study, we developed small molecule P7C3-based NPs and tested its efficacy and toxicity along with the tissue specific aptamer-modified P7C3 NPs. The P7C3 NPs were prepared using poly (D, L-lactic-co-glycolic acid) carboxylic acid (PLGA-COOH) polymer, were conjugated with skeletal muscle-specific RNA aptamer (A01B P7C3 NPs) and characterized for its cytotoxicity, cellular uptake, and wound healing in vitro. The A01B P7C3 NPs demonstrated an encapsulation efficiency of 30.2 ± 2.6%, with the particle size 255.9 ± 4.3 nm, polydispersity index of 0.335 ± 0.05 and zeta potential of + 10.4 ± 1.8mV. The FTIR spectrum of P7C3 NPs displayed complete encapsulation of the drug in the NPs. The P7C3 NPs and A01B P7C3 NPs displayed sustained drug release in vitro for up to 6 days and qPCR analysis confirmed A01B aptamer binding to P7C3 NPs. The C2C12 cells viability assay displayed no cytotoxic effects of all 3 formulations at 48 and 72 h. In addition, the cellular uptake of A01B P7C3 NPs in C2C12 myoblasts demonstrated higher uptake. In vitro assay mimicking wound healing showed improved wound closure with P7C3 NPs. In addition, P7C3 NPs significantly decreased TNF-α induced NF-κB activity in the C2C12/NF-κB reporter cells after 24-hour treatment. The P7C3 NPs showed 3-4-fold higher efficacy compared to P7C3 solutions in both wound-closure and inflammation assays in C2C12 cells. Furthermore, the P7C3 NPs showed 3-4-fold higher efficacy in reducing the infarct size and protected mouse hearts from ex vivo ischemia-reperfusion injury. Overall, this study demonstrates the safe and effective delivery of P7C3 NPs.
RESUMO
Raloxifene (RLX), a biopharmaceutical classification system (BCS) class II drug, is a selective estrogen receptor modulator (SERM) having an estrogenic effect on the bone and an antiestrogenic effect on the endometrium and breast. Low solubility, high permeability, high metabolism, and low bioavailability are the characteristics of raloxifene. Although 60% is absorbed orally, raloxifene shows extremely poor bioavailability (2%) owing to its low solubility and extensive (>90%) intestinal/hepatic first-pass metabolism. Hence, it becomes important to increase the solubility of raloxifene to enhance its bioavailability. In this study, raloxifene nanostructured lipid carriers (RNLCs) were prepared using the melt dispersion ultrasonication method. The prepared RNLCs were characterized, and the in vitro studies were carried out in the human epithelial breast cancer cell line (MCF-7). The RNLCs had a size of 114.8 ± 0.98 nm and a zeta potential of +9.21 ± 0.58 mV. Transmission electron microscopy (TEM) images showed particle size ranging from 65 to 120 nm. With an entrapment efficiency of 75.04% ± 2.75%, the RNLCs showed sustained release over 7 days compared with the raloxifene drug solution. The prepared RNLCs were successfully taken up by the MCF-7 cells in a time-dependent manner, and the RNLCs showed increased cell cytotoxicity compared with the raloxifene drug. Using the parallel artificial membrane permeability assay (PAMPA), the permeability rate for raloxifene solution was calculated to be 8 × 10-6 cm/s, and for the RNLCs, it was calculated to be 17.8 × 10-6 cm/s. Hence, from the permeability rate calculated, we could conclude that raloxifene, when formulated as nanostructured lipid carriers, showed increased permeability. Overall, the prepared RNLCs were found to be superior to the raloxifene drug as such.
Assuntos
Lipídeos , Cloridrato de Raloxifeno , Animais , Feminino , Humanos , Permeabilidade , Cloridrato de Raloxifeno/farmacologia , Ratos , Ratos Wistar , SolubilidadeRESUMO
Age-related macular degeneration (AMD), a multifactorial age-related retinal hypoxic disorder resulting in irreversible loss of vision, is the foremost cause of blindness in the United States. Current treatment strategies involve multiple intraocular injections of antivascular endothelial growth factor (VEGF) agents into the vitreous of eye. In addition to the challenges of drug localization and targeted delivery, the need of frequent injections into the eye raises patient compliance issues, and thus call for development of sustained drug delivery systems. In this study, a sustained drug delivery system was prepared by loading an antihypoxia-induced factor (HIF) agent, honokiol (HON), into methoxy poly (ethylene glycol) polycaprolactone (MPEG-PCL) polymer. These HON-MPEG-PCL micelles were characterized by evaluating size, ζ potential, in vitro drug release profile, and morphology by transmission electron microscopy. The cytotoxic nature of developed micelles was assessed on human retinal pigment epithelial cell line (ARPE-19) cells by cytotoxicity assay. The cellular uptake and HIF and VEGF expression levels were determined in in vitro settings. Micelles formed had a particle size of 30.8 ± 0.8 nm with the poly dispersity index of 0.19 ± 0.0004 and ζ potential was found to be -5.46 ± 0.49 mv. Entrapment efficiency was calculated to be 64 ± 0.135%. In vitro drug release showed sustained release of drug from the formulation. Result from in vitro cytotoxicity study confirmed noncytotoxic nature of HON-MPEG-PCL micelles compared to HON drug solution. Furthermore, enzyme-linked immunosorbent assay studies performed showed the periodic downregulation of HIF and VEGF, which are major growth factors involved in underlying mechanism of AMD. The results showed successful development of HON-MPEG-PCL micelles, which may be useful for the effective treatment of AMD.
Assuntos
Degeneração Macular , Micelas , Compostos de Bifenilo , Humanos , Lignanas , Degeneração Macular/tratamento farmacológico , PoliésteresRESUMO
Age-related macular degeneration, precisely neovascular form, is the leading cause of vision loss and the key treatment includes intravitreal injections of anti-vascular endothelial growth factor (anti-VEGF) agents. A method to increase local concentration of drug at posterior segment of the eye and to reduce the frequency of intravitreal injections is an unmet need. Resveratrol, a naturally occurring antioxidant and anti-inflammatory polyphenol, was loaded in PLGA polymeric nanoparticles to study their sustained release property and effectiveness in reducing expression of VEGF protein in vitro. Nanoparticles were characterized using FTIR, DSC, size, encapsulation efficiency, TEM, and in vitro drug release studies. Using MTT assay, the cytotoxicity of formulation was evaluated on ARPE-19 cells. The cellular uptake and VEGF expression levels were also evaluated in in vitro settings. The optimized formulation had a particle size of 102.7 nm with - 47.30 mV of zeta potential. Entrapment efficiency was found to be 65.21%. The cell viability results suggested compatibility of developed formulation. Cellular uptake and VEGF expression levels for the formulated nanoparticles specified that the developed formulation showed potential cellular uptake and had displayed anti-angiogenic property by inhibiting VEGF expression in vitro. The results showed successful development of resveratrol-loaded nanoparticles which may be used for neovascular AMD treatment alone or in combination with anti-VEGF agents.
Assuntos
Inibidores da Angiogênese/administração & dosagem , Antioxidantes/administração & dosagem , Nanopartículas , Resveratrol/administração & dosagem , Degeneração Macular Exsudativa/tratamento farmacológico , Inibidores da Angiogênese/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Injeções Intravítreas , Polímeros/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Acuidade VisualRESUMO
Pathologic posterior neovascularization of eye is a major cause of irreversible vision loss and limitations of therapeutics to be successfully delivered to back of the eye has been a main obstacle for its effective treatment. Current pharmacological treatment using anti-VEGF agents being delivered intravitreally are effective but complicated due to anatomical and physiological barriers, as well as administration of high and frequent doses. With expanding horizons of nanotechnology, it can be possible to formulate promising nanoscale delivery system to improve penetration and sustained the release of therapeutic in posterior segment of the eye. Taking into consideration advances in the field of nanoscale delivery systems, this special report focuses on emerging strategies and their applications for treatment of posterior ocular neovascularization.
Assuntos
Inibidores da Angiogênese/administração & dosagem , Portadores de Fármacos/química , Nanopartículas/química , Neovascularização Retiniana/terapia , Adenoviridae/genética , Administração Oftálmica , Inibidores da Angiogênese/farmacocinética , Animais , Cegueira/etiologia , Cegueira/prevenção & controle , Barreira Hematoaquosa/metabolismo , Barreira Hematorretiniana/metabolismo , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Humanos , Terapia a Laser/métodos , Absorção Ocular , Permeabilidade , Fotoquimioterapia , Retina/metabolismo , Neovascularização Retiniana/complicações , Resultado do Tratamento , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética , Baixa Visão/etiologia , Baixa Visão/prevenção & controle , VitrectomiaRESUMO
A new bioactive proline-rich cyclohexapeptide - diandrine C (6), previously isolated from whole plant of Drymaria diandra (Caryophyllaceae), was synthesized through coupling reactions of tetrapeptide unit Boc-Gly--Pro--Tyr--Trp-OH with dipeptide unit -Pro-Gly-OMe using N,N-diisopropylcarbodiimide (DIPC) as the coupling agent, followed by cyclization of linear hexapeptide unit under alkaline condition. Structure of cyclohexapeptide was confirmed by means of chemical, and spectroscopic analyses and also was screened for its antimicrobial and anthelmintic properties. Bioevaluation results indicated that the newly synthesized hexacyclopeptide exhibited potent antimicrobial activity against Gram-negative bacteria Pseudomonas aeruginosa, Klebsiella pneumoniae and pathogenic Candida albicans at 6 µg/mL. Moderate to good level of antihelmintic activity against three earthworm species Megascoplex konkanensis, Pontoscotex corethruses and Eudrilus eugeniae was also observed at concentration of 2 mg/mL.
RESUMO
Anti-vascular endothelial growth factor agents have been widely used to treat several eye diseases including age-related macular degeneration (AMD). An approach to maximize the local concentration of drug at the target site and minimize systemic exposure is to be sought. Sunitinib malate, a multiple receptor tyrosine kinase inhibitor was encapsulated in poly(lactic-co-glycolic acid) nanoparticles to impart sustained release. The residence time in vitreal fluid was further increased by incorporating nanoparticles in thermo-reversible gel. Nanoparticles were characterized using TEM, DSC, FTIR, and in vitro drug release profile. The cytotoxicity of the formulation was assessed on ARPE-19 cells using the MTT assay. The cellular uptake, wound scratch assay, and VEGF expression levels were determined in in vitro settings. The optimized formulation had a particle size of 164.5 nm and zeta potential of - 18.27 mV. The entrapment efficiency of 72.0% ± 3.5% and percent drug loading of 9.1 ± 0.7% were achieved. The viability of ARPE-19 cells was greater than 90% for gel loaded, as such and blank nanoparticles at 10 µM and 20 µM concentration tested, whereas for drug solution viability was found to be 83% and 71% respectively at above concentration. The cell viability results suggest the compatibility of the developed formulation. Evaluation of cellular uptake, wound scratch assay, and VEGF expression levels for the developed formulations indicated that the formulation had higher uptake, superior anti-angiogenic potential, and prolonged inhibition of VEGF activity compared with drug solution. The results showed successful development of sunitinib-loaded nanoparticle-based thermo-reversible gel which may be used for the treatment of neovascular AMD.
Assuntos
Inibidores da Angiogênese/uso terapêutico , Nanopartículas/uso terapêutico , Sunitinibe/uso terapêutico , Degeneração Macular Exsudativa/tratamento farmacológico , Inibidores da Angiogênese/administração & dosagem , Humanos , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Sunitinibe/administração & dosagem , Acuidade VisualRESUMO
Despite all the research aiming to treat ocular diseases, age-related macular degeneration (AMD) remains one of the serious diseases worldwide, which needs to be treated. Neovascularization is a key factor in AMD and thus antiangiogenic therapy is beneficial in reducing the development of new abnormal blood vessels. Axitinib, multireceptor tyrosine kinase inhibitor, is a small molecule that works by blocking vascular endothelial growth factor receptors (VEGFR) and platelet-derived growth factor receptors (PDGFR) responsible for developing neovascularization. The goal of this study is to develop a sustained release formulation of axitinib-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles to minimize frequent administration of the drug by intravitreal injection. The nanoparticles were characterized for particle size and zeta potential, as well as using differential scanning calorimetry, transmission electrode microscope, and in vitro drug release profile. The cytotoxicity of the formulation was evaluated on human retinal pigmented epithelium ARPE19 cells by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide salt] assay. The cellular uptake, antimigration assay, and vascular endothelial growth factor (VEGF) expression levels were found out in vitro using cells. The optimized formulation was 131.33 ± 31.20 nm in size with -4.63 ± 0.76 mV zeta potential. Entrapment efficiency was found to be 87.9% ± 2.7%. The cytotoxicity of ARPE19 cells was <12% for nanoparticles suggesting the in vitro compatibility at 10 µM concentration of drug. Cellular uptake, antimigration assay, and VEGF expression levels for the nanoparticles suggested greater uptake, significant antiangiogenic potential, and inhibition of VEGF activity. The results showed successful development of axitinib-loaded PLGA nanoparticles as an alternative potential treatment for AMD.
Assuntos
Axitinibe/administração & dosagem , Axitinibe/farmacologia , Degeneração Macular/tratamento farmacológico , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Axitinibe/síntese química , Axitinibe/química , Varredura Diferencial de Calorimetria , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Composição de Medicamentos , Humanos , Degeneração Macular/patologia , Estrutura Molecular , Tamanho da Partícula , Relação Estrutura-Atividade , Propriedades de Superfície , Cicatrização/efeitos dos fármacosRESUMO
Background: GADD45α is a tumor suppressor protein often upregulated by environmental stresses and DNA-damage agents to cause growth arrest, apoptosis, tumor growth inhibition, and anti-angiogenesis. A novel suicide gene therapy vector pE9NS.G45α was engineered by cloning GADD45α opening reading frame downstream to the synthetic CArG promoter E9NS, which contains nine repeats of CArG element with modified core A/T sequence and functions as a molecular switch to drive the expression of GADD45α. The current study aims to determine the efficacy of this suicide gene therapy vector in combination with cisplatin, resveratrol, and radiation in NSCLC cell lines with various p53 statuses. Methods: Three NSCLC cell lines, H1299 (deleted p53), A549 (wild-type p53), and H23 (mutated p53), were examined in the present investigation to represent NSCLC with different p53 functions. MTT assay was conducted to select suitable doses of cisplatin, resveratrol, and radiation for gene therapy, and dual luciferase assay was performed to validate the activation of promoter E9NS. The efficacy of gene therapy combinations was evaluated by the amount of GADD45α expression, cell survival, and apoptosis. Results: All the combinations successfully activated promoter E9NS to elevate intracellular GADD45α protein levels and subsequently enhanced cell viability reduction and apoptosis induction regardless of p53 status. Conclusion: Our study demonstrates that GADD45α-targeted suicide gene therapy controlled by synthetic promoter E9NS sensitizes NSCLC cells to cisplatin, resveratrol, and radiation and is effective against NSCLC at least in vitro.
RESUMO
Micro- (MPs) and nanoparticles (NPs) have been recently studied for their application in ophthalmic drug delivery. These drug delivery systems are able to circumvent the ocular barriers that currently limit the efficacy of conventional treatments, as well as provide a more sustained release of drug, reducing the frequency of administration and increasing patient compliance. This review summarizes the recent trends in ophthalmic research from conventional treatment to the utilization of MPs and NPs as drug carriers.
Assuntos
Sistemas de Liberação de Medicamentos , Síndromes do Olho Seco/tratamento farmacológico , Glaucoma/tratamento farmacológico , Nanopartículas/química , Animais , Portadores de Fármacos/química , HumanosRESUMO
Glucocorticoids, such as fluticasone propionate (FP), are used for the treatment of inflammation and alleviation of nasal symptoms and allergies, and as an antipruritic. However, both short- and long-term therapeutic use of glucocorticoids can lead to muscle weakness and atrophy. In the present study, we evaluated the feasibility of the nanodelivery of FP with poly(dl-lactide-co-glycolide) (PLGA) and tested in vitro function. FP-loaded PLGA nanoparticles were prepared via nanoprecipitation and morphological characteristics were studied via scanning electron microscopy. FP-loaded nanoparticles demonstrated an encapsulation efficiency of 68.6% ± 0.5% with a drug loading capacity of 4.6% ± 0.04%, were 128.8 ± 0.6 nm in diameter with a polydispersity index of 0.07 ± 0.008, and displayed a zeta potential of -19.4 ± 0.7. A sustained in vitro drug release pattern was observed for up to 7 days. The use of fluticasone nanoparticle decreased lipopolysaccharide (LPS)-induced lactate dehydrogenase release compared with LPS alone in C2C12 treated cells. FP also decreased expression of LPS-induced inflammatory genes in C2C12 treated cells as compared with LPS alone. Taken together, the present study demonstrates in vitro feasibility of PLGA-FP nanoparticle delivery to the skeletal muscle cells, which may be beneficial for treating inflammation.
Assuntos
Portadores de Fármacos/química , Fluticasona/química , Fluticasona/farmacologia , Nanopartículas/química , Animais , Linhagem Celular , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , L-Lactato Desidrogenase/metabolismo , Camundongos , Tamanho da PartículaRESUMO
OBJECTIVE: Polymeric nanoparticles (NPs) containing doxorubicin (DOX) were prepared for the inhibition of hypoxia-induced factor 1α (HIF-1α). SIGNIFICANCE: HIF-1α is responsible for the upregulation of several angiogenic factors, including vascular endothelial growth factor (VEGF). DOX inhibits HIF-1α but is highly toxic. By encapsulating DOX in NPs, drug delivery will be sustained and toxicity will be reduced without limiting efficacy. METHODS: DOX NPs were prepared using both polylactic coglycolic acid (PLGA) and chitosan. PLGA NPs were prepared via nanoprecipitation (NPC) and single and double emulsion diffusion (SE; DE). Chitosan NPs were formulated using ionic gelation (IG), and complex coacervation (CC). Size, polydispersity index (PDI), and zeta potential (ZP) were determined via dynamic light scattering (DLS) (n = 3). The encapsulation efficiency (EE), drug loading capacity (DLC) (n = 3) and in vitro drug release profiles (IVR) at 37 °C (n = 4) were analyzed via spectroscopy at 480 nm (λmax). The cytotoxicity of each formulation as well as free DOX solution in ARPE-19 cells was determined via MTT assay after 24 h (n = 3). HIF-1α and VEGF inhibition in ARPE-19 cells were measured via ELISA (n = 3). RESULTS: The results were consistent with the hypothesis; the NP formulations decreased HIF-1α and VEGF-A expression in ARPE-19 cells with reduced cytotoxicity. SE, DE, and CC demonstrated low ZP as well as the most rapid drug release of the tested formulations. FTIR confirmed the presence of DOX on the SE NP surface, indicating instability. CONCLUSIONS: SE, DE, and CC destabilized. NPC was the most efficient formulation for the nanodelivery of DOX for AMD.
Assuntos
Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Degeneração Macular/tratamento farmacológico , Linhagem Celular , Precipitação Química , Doxorrubicina/farmacocinética , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Emulsões , Células Epiteliais , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Degeneração Macular/patologia , Nanopartículas/química , Tamanho da Partícula , Polímeros/química , Epitélio Pigmentado da Retina/citologia , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
BACKGROUND: Humanin is a novel neuronal peptide that has displayed potential in the treatment of Alzheimer's Disease through the suppression of inflammatory IL-6 cytokine receptors. Such receptors are found throughout the body, including the eye, suggesting its other potential applications. Age-related Macular Degeneration (AMD) is the leading cause of blindness in the developing world. There is no cure for this disease, and current treatments have several negative side effects associated with them, making finding other treatment options desirable. OBJECTIVE: In this study, the potential applications in treating AMD for a more potent humanin derivative, AGA-HNG, were studied. METHODS: AGA-HNG was synthesized and encapsulated in chitosan Nanoparticles (NPs), which were then characterized for their size, Encapsulation Efficiency (EE), and drug release. Their ability to suppress VEGF secretion and protect against oxidative apoptosis was studied in vitro using ARPE-19 cells. The chitosan NPs exhibited similar anti-VEGF properties and oxidative protection as the free protein while exhibiting superior pharmaceutical characteristics including biocompatibility and drug release. RESULTS: Drug-loaded NPs exhibited a radius of 346nm with desirable pharmacokinetic properties including a stable surface charge (19.5 ± 3.7 mV) and steady drug release capacity. AGA-HNG showed great promise in mediating apoptosis in hypoxic cells. They were also able to significantly reduce VEGF expression in vitro with reduced cellular toxicity compared to the free drug. CONCLUSION: The ability of this drug delivery system to reduce retinal apoptosis with desirable pharmacokinetic and biocompatible properties makes this a promising therapeutic option for AMD.
Assuntos
Quitosana/administração & dosagem , Peptídeos e Proteínas de Sinalização Intracelular/administração & dosagem , Nanopartículas/administração & dosagem , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Degeneração Macular , Nanopartículas/química , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
BACKGROUND: The current treatment of ocular neovascularization requires frequent intravitreal injections of anti-vascular endothelial growth factor (VEGF) agents that cause severe side effects. OBJECTIVE: The purpose of this study is to prepare and characterize a novel nanoscale delivery system of apatinib for ocular neovascularization. METHODS: The optimized formulation showed a particle size of 135.04 nm, polydispersity index (PDI) of 0.28 ± 0.07, encapsulation efficiency (EE) of 65.92%, zeta potential (ZP) of -23.70 ± 8.69 mV, and pH of 6.49 ± 0.20. In vitro release was carried out to demonstrate a 3.13-fold increase in the sustainability of apatinib-loaded nanoparticles versus free apatinib solution. RESULT: Cell viability and VEGFA and VEGFR2 expression were analyzed in animal retinal pigment epithelial (ARPE-19) cells. CONCLUSION: The results confirmed the hypothesis that apatinib nanoparticles decreased toxicity (1.36 ± 0.74 fold) and efficient VEGF inhibition (3.51 ± 0.02 fold) via VEGFR2 mediation.
Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos/administração & dosagem , Nanopartículas/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem , Piridinas/administração & dosagem , Antineoplásicos/química , Linhagem Celular , Portadores de Fármacos/química , Oftalmopatias/tratamento farmacológico , Humanos , Nanopartículas/química , Neovascularização Patológica/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Piridinas/química , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismoRESUMO
Age-related macular degeneration (AMD) is one of the leading causes of blindness in the United States, affecting approximately 11 million patients. AMD is caused primarily by an upregulation of vascular endothelial growth factor (VEGF). In recent years, aflibercept injections have been used to combat VEGF. However, this treatment requires frequent intravitreal injections, leading to low patient compliance and several adverse side effects including scarring, increased intraocular pressure, and retinal detachment. Polymeric nanoparticles have demonstrated the ability to deliver a sustained release of drug, thereby reducing the necessary injection frequency. Aflibercept (AFL) was encapsulated in poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs) via double emulsion diffusion. Scanning electron microscopy showed the NPs were spherical and dynamic light scattering demonstrated that they were uniformly distributed (PDI < 1). The encapsulation efficiency and drug loading were 75.76% and 7.76% respectively. In vitro release studies showed a sustained release of drug; 75% of drug was released by the NPs in seven days compared to the full payload released in 24 h by the AFL solution. Future ocular in vivo studies are needed to confirm the biological effects of the NPs. Preliminary studies of the proposed aflibercept NPs demonstrated high encapsulation efficiency, a sustained drug release profile, and ideal physical characteristics for AMD treatment. This drug delivery system is an excellent candidate for further characterization using an ocular neovascularization in vivo model.
RESUMO
An N-methylated analog of a marine bacteria-derived natural proline-rich tetracyclopeptide was synthesized by coupling the deprotected dipeptide fragments Boc-l-prolyl-l-N-methylleucine-OH and l-prolyl-l-N-methylphenylalanine-OMe. A coupling reaction was accomplished utilizing N,N'-Dicyclohexylcarbodidimde (DCC) and 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC·HCl) as coupling agents and Triethylamine (TEA) or N-methylmorpholine (NMM) as the base in the presence of the racemization suppressing agent. This was followed by the cyclization of the linear tetrapeptide fragment under alkaline conditions. The structure of the synthesized cyclooligopeptide was confirmed using quantitative elemental analysis, FTIR (Fourier-transform infrared spectroscopy), ¹H NMR (Nuclear magnetic resonance spectroscopy), 13C NMR, and mass spectrometry. From the bioactivity results, it was clear that the newly synthesized proline-rich tetracyclopeptide exhibited better anthelmintic potential against Megascoplex konkanensis, Pontoscotex corethruses, and Eudrilus eugeniae at a concentration of 2 mg/mL as well as improved antifungal activity against pathogenic dermatophytes Trichophyton mentagrophytes and Microsporum audouinii at a concentration of 6 µg/mL, as compared to non-methylated tetracyclopeptide. Moreover, N-methylated tetracyclopeptide displayed significant activity against pathogenic Candida albicans.