Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Methods ; 18(8): 912-920, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34253926

RESUMO

Cellular identity in complex multicellular organisms is determined in part by the physical organization of cells. However, large-scale investigation of the cellular interactome remains technically challenging. Here we develop cell interaction by multiplet sequencing (CIM-seq), an unsupervised and high-throughput method to analyze direct physical cell-cell interactions between cell types present in a tissue. CIM-seq is based on RNA sequencing of incompletely dissociated cells, followed by computational deconvolution into constituent cell types. CIM-seq estimates parameters such as number of cells and cell types in each multiplet directly from sequencing data, making it compatible with high-throughput droplet-based methods. When applied to gut epithelium or whole dissociated lung and spleen, CIM-seq correctly identifies known interactions, including those between different cell lineages and immune cells. In the colon, CIM-seq identifies a previously unrecognized goblet cell subtype expressing the wound-healing marker Plet1, which is directly adjacent to colonic stem cells. Our results demonstrate that CIM-seq is broadly applicable to unsupervised profiling of cell-type interactions in different tissue types.


Assuntos
Comunicação Celular , Linhagem da Célula , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Transcriptoma , Animais , Feminino , Trato Gastrointestinal/metabolismo , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Baço/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA