Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biosystems ; 240: 105216, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38692427

RESUMO

Cell shapes in tissues are affected by the biophysical interaction between cells. Tissue forces can influence specific cell features such as cell geometry and cell surface area. Here, we examined the 2-dimensional shape, size, and perimeter of pleural epithelial cells at various lung volumes. We demonstrated a 1.53-fold increase in 2-dimensional cell surface area and a 1.43-fold increase in cell perimeter at total lung capacity compared to residual lung volume. Consistent with previous results, close inspection of the pleura demonstrated wavy folds between pleural epithelial cells at all lung volumes. To investigate a potential explanation for the wavy folds, we developed a physical simulacrum suggested by D'Arcy Thompson in On Growth and Form. The simulacrum suggested that the wavy folds were the result of redundant cell membranes unable to contract. To test this hypothesis, we developed a numerical simulation to evaluate the impact of an increase in 2-dimensional cell surface area and cell perimeter on the shape of the cell-cell interface. Our simulation demonstrated that an increase in cell perimeter, rather than an increase in 2-dimensional cell surface area, had the most direct impact on the presence of wavy folds. We conclude that wavy folds between pleural epithelial cells reflects buckling forces arising from the excess cell perimeter necessary to accommodate visceral organ expansion.

2.
Front Netw Physiol ; 3: 1144186, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234691

RESUMO

Mammalian epithelia form a continuous sheet of cells that line the surface of visceral organs. To analyze the epithelial organization of the heart, lung, liver and bowel, epithelial cells were labeled in situ, isolated as a single layer and imaged as large epithelial digitally combine montages. The stitched epithelial images were analyzed for geometric and network organization. Geometric analysis demonstrated a similar polygon distribution in all organs with the greatest variability in the heart epithelia. Notably, the normal liver and inflated lung demonstrated the largest average cell surface area (p < 0.01). In lung epithelia, characteristic wavy or interdigitated cell boundaries were observed. The prevalence of interdigitations increased with lung inflation. To complement the geometric analyses, the epithelia were converted into a network of cell-to-cell contacts. Using the open-source software EpiGraph, subgraph (graphlet) frequencies were used to characterize epithelial organization and compare to mathematical (Epi-Hexagon), random (Epi-Random) and natural (Epi-Voronoi5) patterns. As expected, the patterns of the lung epithelia were independent of lung volume. In contrast, liver epithelia demonstrated a pattern distinct from lung, heart and bowel epithelia (p < 0.05). We conclude that geometric and network analyses can be useful tools in characterizing fundamental differences in mammalian tissue topology and epithelial organization.

4.
J Nanobiotechnology ; 20(1): 546, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36585678

RESUMO

Noninvasive prenatal diagnosis (NIPD) aims to detect fetal-related genetic disorders before birth by detecting markers in the peripheral blood of pregnant women, holding the potential in reducing the risk of fetal birth defects. Fetal-nucleated red blood cells (fNRBCs) can be used as biomarkers for NIPD, given their remarkable nature of carrying the entire genetic information of the fetus. Here, we review recent advances in NIPD technologies based on the isolation and analysis of fNRBCs. Conventional cell separation methods rely primarily on physical properties and surface antigens of fNRBCs, such as density gradient centrifugation, fluorescence-activated cell sorting, and magnetic-activated cell sorting. Due to the limitations of sensitivity and purity in Conventional methods, separation techniques based on micro-/nanomaterials have been developed as novel methods for isolating and enriching fNRBCs. We also discuss emerging methods based on microfluidic chips and nanostructured substrates for static and dynamic isolation of fNRBCs. Additionally, we introduce the identification techniques of fNRBCs and address the potential clinical diagnostic values of fNRBCs. Finally, we highlight the challenges and the future directions of fNRBCs as treatment guidelines in NIPD.


Assuntos
Teste Pré-Natal não Invasivo , Gravidez , Feminino , Humanos , Feto/metabolismo , Eritroblastos/química , Separação Celular/métodos , Citometria de Fluxo
5.
Polymers (Basel) ; 14(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36146055

RESUMO

Pectin is a plant-derived heteropolysaccharide that has been implicated in drug development, tissue engineering, and visceral organ repair. Pectin demonstrates remarkable biostability in a variety of physiologic environments but is biodegradable in water. To understand the dynamics of pectin biodegradation in basic environments, we developed a microfluidics system that facilitated the quantitative comparison of pectin films exposed to facial erosion. Pectin biodegradation was assessed using fluorescein tracer embedded in pectin, trypan blue quenching of released fluorescence, and highly sensitive microfluorimetry. The microfluidic perfusate, delivered through 6 um-pore synthetic membrane interface, demonstrated nonlinear erosion of the pectin film; 75% of tracer was released in 28 h. The microfluidics system was used to identify potential modifiers of pectin erosion. The polyphenolic compound tannic acid, loaded into citrus pectin films, demonstrated a dose-dependent decrease in pectin erosion. Tannic acid had no detectable impact on the physical properties of citrus pectin including adhesivity and cohesion. In contrast, tannic acid weakened the burst strength and cohesion of pectins derived from soy bean and potato sources. We conclude that facial erosion may explain the biostability of citrus pectin on visceral organ surfaces as well as provide a useful method for identifying modifiers of citrus pectin biodegradation.

6.
Small ; 18(6): e2103466, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34837328

RESUMO

Embryonic morphogenesis is a biological process which depicts shape forming of tissues and organs during development. Unveiling the roles of mechanical forces generated, transmitted, and regulated in cells and tissues through these processes is key to understanding the biophysical mechanisms governing morphogenesis. To this end, it is imperative to measure, simulate, and predict the regulation and control of these mechanical forces during morphogenesis. This article aims to provide a comprehensive review of the recent advances on mechanical properties of cells and tissues, generation of mechanical forces in cells and tissues, the transmission processes of these generated forces during cells and tissues, the tools and methods used to measure and predict these mechanical forces in vivo, in vitro, or in silico, and to better understand the corresponding regulation and control of generated forces. Understanding the biomechanics and mechanobiology of morphogenesis will not only shed light on the fundamental physical mechanisms underlying these concerted biological processes during normal development, but also uncover new information that will benefit biomedical research in preventing and treating congenital defects or tissue engineering and regeneration.


Assuntos
Desenvolvimento Embrionário , Fenômenos Biomecânicos , Biofísica , Morfogênese
7.
Polymers (Basel) ; 15(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36616442

RESUMO

Hydrogels provide a promising method for the targeted delivery of protein drugs. Loading the protein drug into the hydrogel free volume can be challenging due to limited quantities of the drug (e.g., growth factor) and complex physicochemical properties of the hydrogel. Here, we investigated both passive and active loading of the heteropolysaccharide hydrogel pectin. Passive loading of glass phase pectin films was evaluated by contact angles and fractional thickness of the pectin films. Four pectin sources demonstrated mean contact angles of 88° with water and 122° with pleural fluid (p < 0.05). Slow kinetics and evaporative losses precluded passive loading. In contrast, active loading of the translucent pectin films was evaluated with the colorimetric tracer methylene blue. Active loading parameters were systematically varied and recorded at 500 points/s. The distribution of the tracer was evaluated by image morphometry. Active loading of the tracer into the pectin films required the optimization of probe velocity, compression force, and contact time. We conclude that active loading using pectin-specific conditions is required for the efficient embedding of low viscosity liquids into pectin hydrogels.

8.
Bioinspir Biomim ; 16(1)2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-32992296

RESUMO

Encoding of sensory information is fundamental to closing the performance gap between man-made and biological sensing. It has been hypothesized that the coupling of sensing and actuation, a phenomenon observed in bats among other species, is critical to accomplishing this. Using horseshoe bats as a model, we have developed a biomimetic pinna model with a soft actuation system along with a prototype strain sensor for enabling motor feedback. The actuation system used three individually controlled pneumatic actuators per pinna which actuated different portions of the baffle. This prototype produced eight different possible motions that were shown to have significant effects on incoming sound and could hence function as a substrate for adaptive sensing. The range of possible motions could be expanded by adjusting the fill and release parameters of the actuation system. Additionally, the strain sensor was able to represent the deformation of the pinna as measurements from this sensor were highly correlated with deformation estimates based on stereo vision. However, the relationship between displacements of points on the pinna and the sensor output was nonlinear. The improvements embodied in the system discussed here could lead to enhancements in the ability of autonomous systems to encode relevant information about the real world.


Assuntos
Quirópteros , Ecolocação , Robótica , Animais , Biomimética , Orelha Externa , Humanos
9.
Bioinspir Biomim ; 14(6): 066014, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31569081

RESUMO

Certain bat species (e.g. horseshoe bats, family Rhinolophidae) are known for conspicuous deformations of the emission baffles (noseleaves) and reception baffles (ears). Previously reported numerical studies and experiments with biomimetic reproductions of these baffles have shown that such deformations can result in time-variant emitter/receiver characteristics. However, it has not been investigated whether these time-variant characteristics could also manifest themselves in likewise time-variant properties in echoes from targets of varying complexity. To investigate this question, a biomimetic sonar head complete with deformable emission and reception baffles has been used to ensonify targets with different simple geometries (sphere, cylinder, and cube) as well as random, more natural target geometries (artificial plants) from distances of about 1 meter. Time-variant echo signatures were found in all these cases, i.e. irrespective of target complexity and whether the time-variance was injected into the emission, the reception, or into both. This demonstrates that although the time-variant emission/reception characteristics had been previously measured only under careful conditions, they are capable of impacting real-world echoes. Even targets with distributed clouds of scattering facets did not obscure the effects of the changing conformation states. Hence these changes in ear position created by baffle deformations could serve the animals or man-made sonar systems that mimic them to encode additional echo information through time-variant echo signatures.


Assuntos
Biomimética/instrumentação , Quirópteros/fisiologia , Animais , Ecolocação , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA