Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 11(6): 240271, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39100157

RESUMO

Marine predators are integral to the functioning of marine ecosystems, and their consumption requirements should be integrated into ecosystem-based management policies. However, estimating prey consumption in diving marine predators requires innovative methods as predator-prey interactions are rarely observable. We developed a novel method, validated by animal-borne video, that uses tri-axial acceleration and depth data to quantify prey capture rates in chinstrap penguins (Pygoscelis antarctica). These penguins are important consumers of Antarctic krill (Euphausia superba), a commercially harvested crustacean central to the Southern Ocean food web. We collected a large data set (n = 41 individuals) comprising overlapping video, accelerometer and depth data from foraging penguins. Prey captures were manually identified in videos, and those observations were used in supervised training of two deep learning neural networks (convolutional neural network (CNN) and V-Net). Although the CNN and V-Net architectures and input data pipelines differed, both trained models were able to predict prey captures from new acceleration and depth data (linear regression slope of predictions against video-observed prey captures = 1.13; R 2 ≈ 0.86). Our results illustrate that deep learning algorithms offer a means to process the large quantities of data generated by contemporary bio-logging sensors to robustly estimate prey capture events in diving marine predators.

2.
Biol Open ; 13(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38752596

RESUMO

Despite its wide distribution, relatively little is known of the foraging ecology and habitat use of the black-faced cormorant (Phalacrocorax fuscescens), an Australian endemic seabird. Such information is urgently required in view of the rapid oceanic warming of south-eastern Australia, the stronghold of the species. The present study used a combination of opportunistically collected regurgitates and GPS/dive behaviour data loggers to investigate diet, foraging behaviour and habitat-use of black-faced cormorants during four chick-rearing periods (2020-2023) on Notch Island, northern Bass Strait. Observed prey species were almost exclusively benthic (95%), which is consistent with the predominantly benthic diving behaviour recorded. Males foraged at deeper depths than females (median depth males: 18 m; median depth females: 8 m), presumably due to a greater physiological diving capacity derived from their larger body size. This difference in dive depths was associated with sexual segregation of foraging locations, with females predominantly frequenting shallower areas closer to the coastline. These findings have strong implications for the management of the species, as impacts of environmental change may disproportionally affect the foraging range of one sex and, thereby, reproductive success.


Assuntos
Aves , Ecossistema , Comportamento Alimentar , Animais , Aves/fisiologia , Austrália , Feminino , Masculino
3.
J Exp Biol ; 226(23)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37947172

RESUMO

The trade off between energy gained and expended is the foundation of understanding how, why and when animals perform any activity. Based on the concept that animal movements have an energetic cost, accelerometry is increasingly being used to estimate energy expenditure. However, validation of accelerometry as an accurate proxy for field metabolic rate in free-ranging species is limited. In the present study, Australasian gannets (Morus serrator) from the Pope's Eye colony (38°16'42″S 144°41'48″E), south-eastern Australia, were equipped with GPS and tri-axial accelerometers and dosed with doubly labelled water (DLW) to measure energy expenditure during normal behaviour for 3-5 days. The correlation between daily energy expenditure from the DLW and vectorial dynamic body acceleration (VeDBA) was high for both a simple correlation and activity-specific approaches (R2=0.75 and 0.80, respectively). Varying degrees of success were observed for estimating at-sea metabolic rate from accelerometry when removing time on land using published energy expenditure constants (R2=0.02) or activity-specific approaches (R2=0.42). The predictive capacity of energy expenditure models for total and at-sea periods was improved by the addition of total distance travelled and proportion of the sampling period spent at sea during the night, respectively (R2=0.61-0.82). These results indicate that accelerometry can be used to estimate daily energy expenditure in free-ranging gannets and its accuracy may depend on the inclusion of movement parameters not detected by accelerometry.


Assuntos
Acelerometria , Metabolismo Energético , Animais , Acelerometria/métodos , Água , Aves , Movimento
4.
R Soc Open Sci ; 10(8): 221595, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37650066

RESUMO

Investigation of foraging decisions can help understand how animals efficiently gather and exploit food. Prey chase and handling times are important aspects of foraging efficiency, influencing the net energy gain derived from a prey item. However, these metrics are often overlooked in studies of foraging behaviour due to the difficulty in observing them. The present study used animal-borne cameras to investigate the type, duration and energetic consequences of predator-prey interactions in little penguins (Eudyptula minor) (n = 32) from two colonies in Bass Strait, south-eastern Australia. A total of seven main prey items were observed and consumed by little penguins. Penguins were observed to consume prey types and use strategies that have not been previously documented. These included consumption of bellowsfish (Macroramphosus scolopax) and other fish species captured sheltering around jellyfish or extracted dead from the tentacles. Chase and handling time varied with prey type and lasted approximately 2 s for most prey. Profitability varied among prey types, with a greater amount of low profitable prey being consumed, suggesting a trade-off between minimizing energetic costs, and increasing capture rates. These results highlight the use of animal-borne video data loggers to further understand the foraging adaptations of important predators in the marine environment.

5.
Oecologia ; 199(3): 537-548, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35606670

RESUMO

Niche theory predicts that to reduce competition for the same resource, sympatric ecologically similar species should exploit divergent niches and segregate in one or more dimensions. Seasonal variations in environmental conditions and energy requirements can influence the mechanisms and the degree of niche segregation. However, studies have overlooked the multi-dimensional aspect of niche segregation over the whole annual cycle, and key facets of species co-existence still remain ambiguous. The present study provides insights into the niche use and partitioning of two morphologically and ecologically similar seabirds, the common (CDP, Pelecanoides urinatrix) and the South Georgian diving petrel (SGDP, Pelecanoides georgicus). Using phenology, at-sea distribution, diving behavior and isotopic data (during the incubation, chick-rearing and non-breeding periods), we show that the degree of partitioning was highly stage-dependent. During the breeding season, the greater niche segregation during chick-rearing than incubation supported the hypothesis that resource partitioning increases during energetically demanding periods. During the post breeding period, while species-specific latitudinal differences were expected (species specific water mass preference), CDP and SGDP also migrated in divergent directions. This segregation in migration area may not be only a response to the selective pressure arising from competition avoidance between sympatric species, but instead, could reflect past evolutionary divergence. Such stage-dependent and context-dependent niche segregation demonstrates the importance of integrative approaches combining techniques from different fields, throughout the entire annual cycle, to better understand the co-existence of ecologically similar species. This is particularly relevant in order to fully understand the short and long-term effects of ongoing environmental changes on species distributions and communities.This work demonstrates the need of integrative multi-dimensional approaches combining concepts and techniques from different fields to understand the mechanism and causal factors of niche segregation.


Assuntos
Irmãos , Simpatria , Animais , Aves/fisiologia , Ecossistema , Especificidade da Espécie
6.
PLoS One ; 16(11): e0259961, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34847167

RESUMO

Stable isotope analyses, particularly of carbon (δ13C) and nitrogen (δ15N), are used to investigate ecological relationships among species. For marine predators, research has shown the main factors influencing their intra-specific and intra-individual isotopic variation are geographical movements and changes in the composition of diet over time. However, as the differences seen may be the result of changes in the prey items consumed, a change in feeding location or the combination of both, knowledge of the temporal and spatial consistency in the isotopic values of prey becomes crucial for making accurate inferences about predator diets. This study used an abundant marine predator, the Australasian gannet (Morus serrator), as prey sampler to investigate the annual variation in fish and squid prey isotope values over a four-year period (2012-2015) and the geographic variation between two sites with contrasting oceanographic conditions. Significant inter-annual variation was observed in δ13C and/or δ15N values of five of the eight prey species analysed. The strongest inter-annual variation in both δ13C and δ15N values occurred in 2015, which coincided with a strong El Niño-Southern Oscillation (ENSO). This may suggest a temporal fluctuation in the geographic source of prey or the origin of their nutrients. These results suggest that it is important to consider the potential significant differences in isotopic values within the prey assemblages that predators consume. This is important to improve the interpretation of marine predator isotope results when determining the influence of environmental variability on their diets.


Assuntos
Organismos Aquáticos/metabolismo , Comportamento Alimentar/fisiologia , Isótopos/análise , Animais , Austrália , Carbono/metabolismo , Dieta , El Niño Oscilação Sul/efeitos adversos , Comportamento Alimentar/classificação , Cadeia Alimentar , Geografia , Nitrogênio/metabolismo , Nutrientes/metabolismo , Oceanografia , Comportamento Predatório/fisiologia , Alimentos Marinhos , Análise Espaço-Temporal
7.
PeerJ ; 9: e11206, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33954042

RESUMO

The endangered Galapagos sea lion (GSL, Zalophus wollebaeki) exhibits a range of foraging strategies utilising various dive types including benthic, epipelagic and mesopelagic dives. In the present study, potential prey captures (PPC), prey energy consumption and energy expenditure in lactating adult female GSLs (n = 9) were examined to determine their foraging efficiency relative to the foraging strategy used. Individuals displayed four dive types: (a) epipelagic (<100 m; EP); or (b) mesopelagic (>100 m; MP) with a characteristic V-shape or U-shape diving profile; and (c) shallow benthic (<100 m; SB) or (d) deep benthic (>100 m; DB) with square or flat-bottom dive profiles. These dive types varied in the number of PPC, assumed prey types, and the energy expended. Prey items and their energetic value were assumed from previous GSL diet studies in combination with common habitat and depth ranges of the prey. In comparison to pelagic dives occurring at similar depths, when diving benthically, GSLs had both higher prey energy consumption and foraging energy expenditure whereas PPC rate was lower. Foraging efficiency varied across dive types, with benthic dives being more profitable than pelagic dives. Three foraging trip strategies were identified and varied relative to prey energy consumed, energy expended, and dive behaviour. Foraging efficiency did not significantly vary among the foraging trip strategies suggesting that, while individuals may diverge into different foraging habitats, they are optimal within them. These findings indicate that these three strategies will have different sensitivities to habitat-specific fluctuations due to environmental change.

8.
PLoS One ; 12(8): e0182734, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28832641

RESUMO

Recent studies have documented that little penguins (Eudyptula minor) associate at sea, displaying synchronised diving behaviour throughout a foraging trip. However, previous observations were limited to a single foraging trip where only a small number of individuals were simultaneously tracked. Consequently, it is not known whether coordinated behaviour is consistent over time, or what factors influence it. In the present study, breeding adults were concurrently instrumented with GPS and dive behaviour data loggers for at least 2 consecutive foraging trips during guard and post-guard stage at two breeding colonies (London Bridge and Gabo Island, south-eastern Australia) of contrasting population size (approximately 100 and 30,000-40,000, respectively). At both colonies, individuals were sampled in areas of comparable nesting density and spatial area. At London Bridge, where individuals use a short (23 m) common pathway from their nests to the shoreline, > 90% (n = 42) of birds displayed foraging associations and 53-60% (n = 20) maintained temporally consistent associations with the same conspecifics. Neither intrinsic (sex, size or body condition) nor extrinsic (nest proximity) factors were found to influence foraging associations. However, individuals that departed from the colony at a similar time were more likely to associate during a foraging trip. At Gabo Island, where individuals use a longer (116 m) pathway with numerous tributaries to reach the shoreline, few individuals (< 31%; n = 13) from neighbouring nests associated at sea and only 1% (n = 1) maintained associations over subsequent trips. However, data from animal-borne video cameras indicated individuals at this colony displayed foraging associations of similar group size to those at London Bridge. This study reveals that group foraging behaviour occurs at multiple colonies and the pathways these individuals traverse with conspecifics may facilitate opportunistic group formation and resulting in foraging associations irrespective of nesting proximity and other factors.


Assuntos
Comportamento Alimentar , Spheniscidae/fisiologia , Animais
9.
PLoS One ; 10(12): e0144297, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26674073

RESUMO

Group foraging provides predators with advantages in over-powering prey larger than themselves or in aggregating small prey for efficient exploitation. For group-living predatory species, cooperative hunting strategies provide inclusive fitness benefits. However, for colonial-breeding predators, the benefit pay-offs of group foraging are less clear due to the potential for intra-specific competition. We used animal-borne cameras to determine the prey types, hunting strategies, and success of little penguins (Eudyptula minor), a small, colonial breeding air-breathing marine predator that has recently been shown to display extensive at-sea foraging associations with conspecifics. Regardless of prey type, little penguins had a higher probability of associating with conspecifics when hunting prey that were aggregated than when prey were solitary. In addition, success was greater when individuals hunted schooling rather than solitary prey. Surprisingly, however, success on schooling prey was similar or greater when individuals hunted on their own than when with conspecifics. These findings suggest individuals may be trading-off the energetic gains of solitary hunting for an increased probability of detecting prey within a spatially and temporally variable prey field by associating with conspecifics.


Assuntos
Comportamento Predatório , Spheniscidae , Animais , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA