Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 52(10): 3195-3202, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36794766

RESUMO

Four luminescent ratiometric oxygen sensors, pairing phosphorescent cyclometalated iridium with coumarin or BODIPY fluorophores, are presented here. These compounds realize three key improvements over our previous designs, namely higher phosphorescence quantum yields, the ability to access intermediate dynamic ranges better suited for typical atmospheric O2 levels, and the possibility of using visible excitation instead of UV. These ratiometric sensors are accessed via very simple, 1-step syntheses involving direct reaction of the chloro-bridged cyclometalated iridium dimer with the pyridyl-substituted fluorophore. They have phosphorescent quantum yields up to 29% with short to intermediate phosphoresence lifetimes ranging from 1.7 to 5.3 µs in three of the sensors, with the fourth having a long lifetime of 440 µs that is very responsive to oxygen. In one case, visible excitation of 430 nm is used to provide dual emission instead of UV excitation.

2.
Chem Sci ; 13(30): 8804-8812, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35975154

RESUMO

In this work we introduce a new series of ratiometric oxygen sensors based on phosphorescent cyclometalated iridium centers partnered with organic coumarin fluorophores. Three different cyclometalating ligands and two different pyridyl-containing coumarin types were used to prepare six target complexes with tunable excited-state energies. Three of the complexes display dual emission, with fluorescence arising from the coumarin ligand, and phosphorescence from either the cyclometalated iridium center or the coumarin. These dual-emitting complexes function as ratiometric oxygen sensors, with the phosphorescence quenched under O2 while fluorescence is unaffected. The use of blue-fluorescent coumarins results in good signal resolution between fluorescence and phosphorescence. Moreover, the sensitivity and dynamic range, measured with Stern-Volmer analysis, can be tuned two orders of magnitude by virtue of our ability to synthetically control the triplet excited-state ordering. The complex with cyclometalated iridium 3MLCT phosphorescence operates under hyperoxic conditions, whereas the two complexes with coumarin-centered phosphorescence are sensitive to very low levels of O2 and function as hypoxic sensors.

3.
Dalton Trans ; 50(48): 17851-17863, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34787613

RESUMO

In this Perspective, we highlight many examples of photoluminescent metal complexes supported by isocyanides, with an emphasis on recent developments including several from our own group. Work in this field has shown that the isocyanide can play important structural roles, both as a terminal ligand and as a bridging ligand for polynuclear structures, and can influence the excited-state character and excited-state dynamics. In addition, there are many examples of isocyanide-supported complexes where the isocyanide serves as a chromophoric ligand, meaning the low-energy excited states that are important in the photochemistry are partially or completely localized on the isocyanide. Finally, an emerging trend in the design of luminescent compounds is to use the isocyanide as an electrophilic precursor, converted to an acyclic carbene by nucleophilic addition which imparts certain photophysical advantages. This Perspective aims to show the diverse roles played by isocyanides in the design of luminescent compounds, showcasing the recent developments that have led to a substantial growth in fundamental knowledge, function, and applications related to photoluminescence.

4.
Dalton Trans ; 49(39): 13854-13861, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33006358

RESUMO

Presented here is a new class of supramolecular cyclometalated Ir(iii) complexes. The 2 : 1 assemblies include two phosphorescent cyclometalated Ir(iii) centers spanned by a BODIPY bridge with pyridine substituents at the ß-pyrrole positions. The three complexes, which vary with respect to the cyclometalating ligand on iridium, are prepared via a simple one-pot procedure, with the target complexes isolated in 31-75% yield. The photophysics of these new compounds are described in detail. All complexes are strongly photoluminescent, with fluorescence from BODIPY being the dominant emission pathway. One member of the series has a near-unity photoluminescence quantum yield, significantly enhanced relative to the free BODIPY. The cyclometalating ligand on iridium controls the energy of the Ir-centered triplet excited state, but in all cases energy transfer from the Ir centers to the BODIPY quenches almost all phosphorescence. This work outlines a new, simple synthetic method for accessing supramolecular complexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA