Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Sci Adv ; 10(8): eadi4819, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38394208

RESUMO

The initiation of human pregnancy is marked by the implantation of an embryo into the uterine environment; however, the underlying mechanisms remain largely elusive. To address this knowledge gap, we developed hormone-responsive endometrial organoids (EMO), termed apical-out (AO)-EMO, which emulate the in vivo architecture of endometrial tissue. The AO-EMO comprise an exposed apical epithelium surface, dense stromal cells, and a self-formed endothelial network. When cocultured with human embryonic stem cell-derived blastoids, the three-dimensional feto-maternal assembloid system recapitulates critical implantation stages, including apposition, adhesion, and invasion. Endometrial epithelial cells were subsequently disrupted by syncytial cells, which invade and fuse with endometrial stromal cells. We validated this fusion of syncytiotrophoblasts and stromal cells using human blastocysts. Our model provides a foundation for investigating embryo implantation and feto-maternal interactions, offering valuable insights for advancing reproductive medicine.


Assuntos
Implantação do Embrião , Endométrio , Gravidez , Feminino , Humanos , Blastocisto , Embrião de Mamíferos , Trofoblastos
2.
BMC Genomics ; 25(1): 143, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317092

RESUMO

BACKGROUND: Histone acetylation, which is regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), plays a crucial role in the control of gene expression. HDAC inhibitors (HDACi) have shown potential in cancer therapy; however, the specific roles of HDACs in early embryos remain unclear. Moreover, although some pan-HDACi have been used to maintain cellular undifferentiated states in early embryos, the specific mechanisms underlying their effects remain unknown. Thus, there remains a significant knowledge gap regarding the application of selective HDACi in early embryos. RESULTS: To address this gap, we treated early embryos with two selective HDACi (MGCD0103 and T247). Subsequently, we collected and analyzed their transcriptome data at different developmental stages. Our findings unveiled a significant effect of HDACi treatment during the crucial 2-cell stage of zygotes, leading to a delay in embryonic development after T247 and an arrest at 2-cell stage after MGCD0103 administration. Furthermore, we elucidated the regulatory targets underlying this arrested embryonic development, which pinpointed the G2/M phase as the potential period of embryonic development arrest caused by MGCD0103. Moreover, our investigation provided a comprehensive profile of the biological processes that are affected by HDACi, with their main effects being predominantly localized in four aspects of zygotic gene activation (ZGA): RNA splicing, cell cycle regulation, autophagy, and transcription factor regulation. By exploring the transcriptional regulation and epigenetic features of the genes affected by HDACi, we made inferences regarding the potential main pathways via which HDACs affect gene expression in early embryos. Notably, Hdac7 exhibited a distinct response, highlighting its potential as a key player in early embryonic development. CONCLUSIONS: Our study conducted a comprehensive analysis of the effects of HDACi on early embryonic development at the transcriptional level. The results demonstrated that HDACi significantly affected ZGA in embryos, elucidated the distinct actions of various selective HDACi, and identified specific biological pathways and mechanisms via which these inhibitors modulated early embryonic development.


Assuntos
Inibidores de Histona Desacetilases , Transcriptoma , Gravidez , Feminino , Camundongos , Animais , Inibidores de Histona Desacetilases/farmacologia , Benzamidas/farmacologia , Pirimidinas/farmacologia
3.
Nucleic Acids Res ; 52(1): 114-124, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38015437

RESUMO

Next-generation DNA sequencing (NGS) in short-read mode has recently been used for genetic testing in various clinical settings. NGS data accuracy is crucial in clinical settings, and several reports regarding quality control of NGS data, primarily focusing on establishing NGS sequence read accuracy, have been published thus far. Variant calling is another critical source of NGS errors that remains unexplored at the single-nucleotide level despite its established significance. In this study, we used a machine-learning-based method to establish an exome-wide benchmark of difficult-to-sequence regions at the nucleotide-residue resolution using 10 genome sequence features based on real-world NGS data accumulated in The Genome Aggregation Database (gnomAD) of the human reference genome sequence (GRCh38/hg38). The newly acquired metric, designated the 'UNMET score,' along with additional lines of structural information from the human genome, allowed us to assess the sequencing challenges within the exonic region of interest using conventional short-read NGS. Thus, the UNMET score could provide a basis for addressing potential sequential errors in protein-coding exons of the human reference genome sequence GRCh38/hg38 in clinical sequencing.


Assuntos
Exoma , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Humanos , DNA , Exoma/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/normas
4.
J Thorac Oncol ; 19(3): 434-450, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37924972

RESUMO

INTRODUCTION: Osimertinib is an irreversible EGFR tyrosine kinase inhibitor approved for the first-line treatment of patients with metastatic NSCLC harboring EGFR exon 19 deletions or L858R mutations. Patients treated with osimertinib invariably develop acquired resistance by mechanisms involving additional EGFR mutations, MET amplification, and other pathways. There is no known involvement of the oncogenic MUC1-C protein in acquired osimertinib resistance. METHODS: H1975/EGFR (L858R/T790M) and patient-derived NSCLC cells with acquired osimertinib resistance were investigated for MUC1-C dependence in studies of EGFR pathway activation, clonogenicity, and self-renewal capacity. RESULTS: We reveal that MUC1-C is up-regulated in H1975 osimertinib drug-tolerant persister cells and is necessary for activation of the EGFR pathway. H1975 cells selected for stable osimertinib resistance (H1975-OR) and MGH700-2D cells isolated from a patient with acquired osimertinib resistance are found to be dependent on MUC1-C for induction of (1) phospho (p)-EGFR, p-ERK, and p-AKT, (2) EMT, and (3) the resistant phenotype. We report that MUC1-C is also required for p-EGFR, p-ERK, and p-AKT activation and self-renewal capacity in acquired osimertinib-resistant (1) MET-amplified MGH170-1D #2 cells and (2) MGH121 Res#2/EGFR (T790M/C797S) cells. Importantly, targeting MUC1-C in these diverse models reverses osimertinib resistance. In support of these results, high MUC1 mRNA and MUC1-C protein expression is associated with a poor prognosis for patients with EGFR-mutant NSCLCs. CONCLUSIONS: Our findings reveal that MUC1-C is a common effector of osimertinib resistance and is a potential target for the treatment of osimertinib-resistant NSCLCs.


Assuntos
Acrilamidas , Carcinoma Pulmonar de Células não Pequenas , Indóis , Neoplasias Pulmonares , Pirimidinas , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Receptores ErbB/metabolismo , Mutação , Proteínas Proto-Oncogênicas c-akt/genética , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Compostos de Anilina/farmacologia , Mucina-1/genética
5.
Proc Natl Acad Sci U S A ; 120(51): e2311372120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38085778

RESUMO

The placenta serves as the interface between the mother and fetus, facilitating the exchange of gases and nutrients between their separate blood circulation systems. Trophoblasts in the placenta play a central role in this process. Our current understanding of mammalian trophoblast development relies largely on mouse models. However, given the diversification of mammalian placentas, findings from the mouse placenta cannot be readily extrapolated to other mammalian species, including humans. To fill this knowledge gap, we performed CRISPR knockout screening in human trophoblast stem cells (hTSCs). We targeted genes essential for mouse placental development and identified more than 100 genes as critical regulators in both human hTSCs and mouse placentas. Among them, we further characterized in detail two transcription factors, DLX3 and GCM1, and revealed their essential roles in hTSC differentiation. Moreover, a gene function-based comparison between human and mouse trophoblast subtypes suggests that their relationship may differ significantly from previous assumptions based on tissue localization or cellular function. Notably, our data reveal that hTSCs may not be analogous to mouse TSCs or the extraembryonic ectoderm (ExE) in which in vivo TSCs reside. Instead, hTSCs may be analogous to progenitor cells in the mouse ectoplacental cone and chorion. This finding is consistent with the absence of ExE-like structures during human placental development. Our data not only deepen our understanding of human trophoblast development but also facilitate cross-species comparison of mammalian placentas.


Assuntos
Placenta , Placentação , Humanos , Gravidez , Camundongos , Feminino , Animais , Placentação/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Trofoblastos , Diferenciação Celular , Células-Tronco , Mamíferos
6.
Cancers (Basel) ; 15(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38067312

RESUMO

BACKGROUND: Comprehensive genomic profiling (CGP) has become generally accepted practice in cancer care since CGP has become reimbursed by national healthcare insurance in Japan in 2019. However, its usefulness for cancer patients is insufficient for several reasons. METHODS: In an observational clinical study of FoundationOne® CDx, potential biomarkers were explored and the cause of testing failure was investigated. A total of 220 cancer patients were enrolled in the study during the period from 2018 to 2019 at Kyushu University Hospital. RESULTS: The primary tumor sites of the 220 cases were breast (115), colon (29), stomach (19), and pancreas (20). The present dataset suggested that homologous recombination repair (HRR) gene alterations were positively associated with tumor mutational burden-high (TMB-high) (p = 0.0099). A public dataset confirmed that patients with HRR gene alterations had a higher TMB and showed significantly longer survival of immunotherapy. In the present study, 18 cases failed sequencing. A lower percentage of tumor cell nuclei was the most common reason for testing failures (p = 0.037). Cases that received neoadjuvant chemotherapy before sampling tended to fail testing. CONCLUSIONS: HRR gene alterations can be a potential biomarker predicting TMB-high and a good response to immunotherapy. For successful sequencing, samples with lower percentages of tumor cell nuclei and previous neoadjuvant chemotherapy should be avoided.

7.
BMC Cancer ; 23(1): 619, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400777

RESUMO

BACKGROUND: Whole-genome doubling (WGD) is a common mutation in cancer. Various studies have suggested that WGD is associated with a poor prognosis in cancer. However, the detailed association between WGD occurrence and prognosis remains unclear. In this study, we aimed to elucidate the mechanism by which WGD affects prognosis using sequencing data from the Pan-Cancer Analysis of Whole Genomes (PCAWG) and The Cancer Genome Atlas. METHODS: Whole-genome sequencing data of 23 cancer types were downloaded from PCAWG project. We defined the WGD event in each sample using the WGD status annotated using PCAWG. We used MutationTimeR to predict the relative timings of mutations and loss of heterozygosity (LOH) in WGD, thus evaluating their association with WGD. We also analyzed the association between WGD-associated factors and patient prognosis. RESULTS: WGD was associated with several factors, e.g., length of LOH regions. Survival analysis using WGD-associated factors revealed that longer LOH regions and LOH in chr17 were associated with poor prognosis in samples with WGD (WGD samples) and samples without WGD (nWGD samples). In addition to these two factors, nWGD samples showed that the number of mutations in tumor suppressor genes was associated with prognosis. Moreover, we explored the genes associated with prognosis in both samples separately. CONCLUSION: The prognosis-related factors in WGD samples differed significantly compared with those in nWGD samples. This study emphasizes the need for different treatment strategies for WGD and nWGD samples.


Assuntos
Genoma Humano , Neoplasias , Humanos , Neoplasias/genética , Mutação , Perda de Heterozigosidade , Prognóstico
8.
Sci Rep ; 13(1): 7593, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37165041

RESUMO

Recent studies have shown that some silent mutations can be harmful to various processes. In this study, we performed a comprehensive in silico analysis to elucidate the effects of silent mutations on cancer pathogenesis using exome sequencing data derived from the Cancer Genome Atlas. We focused on the codon optimality scores of silent mutations, which were defined as the difference between the optimality of synonymous codons, calculated using the codon usage table. The relationship between cancer evolution and silent mutations showed that the codon optimality score of the mutations that occurred later in carcinogenesis was significantly higher than of those that occurred earlier. In addition, mutations with higher scores were enriched in genes involved in the cell cycle and cell division, while those with lower scores were enriched in genes involved in apoptosis and cellular senescence. Our results demonstrate that some silent mutations can be involved in cancer pathogenesis.


Assuntos
Neoplasias , Mutação Silenciosa , Humanos , Evolução Molecular , Mutação , Códon , Neoplasias/genética
9.
Inflamm Regen ; 43(1): 20, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922861

RESUMO

BACKGROUND: Alzheimer's disease (AD) is one of the neurodegenerative diseases and characterized by the appearance and accumulation of amyloid-ß (Aß) aggregates and phosphorylated tau with aging. The aggregation of Aß, which is the main component of senile plaques, is closely associated with disease progression. AppNL-G-F mice, a mouse model of AD, have three familial AD mutations in the amyloid-ß precursor gene and exhibit age-dependent AD-like symptoms and pathology. Gut-brain interactions have attracted considerable attention and inflammatory bowel disease (IBD) has been associated with a higher risk of dementia, especially AD, in humans. However, the underlying mechanisms and the effects of intestinal inflammation on the brain in AD remain largely unknown. Therefore, we aimed to investigate the effects of intestinal inflammation on AD pathogenesis. METHODS: Wild-type and AppNL-G-F mice at three months of age were fed with water containing 2% dextran sulfate sodium (DSS) to induce colitis. Immune cells in the brain were analyzed using single-cell RNA sequencing (scRNA-seq) analysis, and the aggregation of Aß protein in the brain was analyzed via immunohistochemistry. RESULTS: An increase in aggregated Aß was observed in the brains of AppNL-G-F mice with acute intestinal inflammation. Detailed scRNA-seq analysis of immune cells in the brain showed that neutrophils in the brain increased after acute enteritis. Eliminating neutrophils by antibodies suppressed the accumulation of Aß, which increased because of intestinal inflammation. CONCLUSION: These results suggest that neutrophils infiltrate the AD brain parenchyma when acute colitis occurs, and this infiltration is significantly related to disease progression. Therefore, we propose that neutrophil-targeted therapies could reduce Aß accumulation observed in early AD and prevent the increased risk of AD due to colitis.

10.
Hum Mol Genet ; 32(7): 1175-1183, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36349694

RESUMO

Loss of heterozygosity (LOH) is a genetic alteration that results from the loss of one allele at a heterozygous locus. In particular, copy neutral LOH (CN-LOH) events are generated, for example, by mitotic homologous recombination after monoallelic defection or gene conversion, resulting in novel homozygous locus having two copies of the normal counterpart allele. This phenomenon can serve as a source of genome diversity and is associated with various diseases. To clarify the nature of the CN-LOH such as the frequency, genomic distribution and inheritance pattern, we made use of whole-genome sequencing data of the three-generation CEPH/Utah family cohort, with the pedigree consisting of grandparents, parents and offspring. We identified an average of 40.7 CN-LOH events per individual taking advantage of 285 healthy individuals from 33 families in the cohort. On average 65% of them were classified as gonosomal-mosaicism-associated CN-LOH, which exists in both germline and somatic cells. We also confirmed that the incidence of the CN-LOH has little to do with the parents' age and sex. Furthermore, through the analysis of the genomic region including the CN-LOH, we found that the chance of the occurrence of the CN-LOH tends to increase at the GC-rich locus and/or on the chromosome having a relatively close inter-homolog distance. We expect that these results provide significant insights into the association between genetic alteration and spatial position of chromosomes as well as the intrinsic genetic property of the CN-LOH.


Assuntos
Variações do Número de Cópias de DNA , Perda de Heterozigosidade , Humanos , Variações do Número de Cópias de DNA/genética , Mutação , Perda de Heterozigosidade/genética , Mosaicismo , Cromossomos
11.
RNA Biol ; 19(1): 1143-1152, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-36329613

RESUMO

Mutations that affect phenotypes have been identified primarily as those that directly alter amino acid sequences or disrupt splice sites. However, some mutations not located in functionally important sites can also affect phenotypes, such as splice-site-creating mutations (SCMs). To investigate how frequent exon extension/shrinkage events induced by SCMs occur in normal individuals, we used personal genome sequencing data and transcriptome data of the corresponding individuals and identified 371 exon extension/shrinkage events in normal individuals. This number was about three times higher than the number of pseudo-exon activation events identified in the previous study. The average numbers of exon extension and exon shrinkage events in each sample were 3.3 and 11.2, respectively. We also evaluated the impact of exon extension/shrinkage events on the resulting transcripts and their protein products and found that 40.2% of the identified events may have possible functional impacts by either generating premature termination codons in transcripts or affecting protein domains. Our results indicated that a certain fraction of SCMs identified in this study can be pathogenic mutations by creating novel splice sites.


Assuntos
Proteínas , Splicing de RNA , Éxons , Mutação , Sequência de Bases , Proteínas/genética , Sítios de Splice de RNA , Íntrons
12.
Commun Biol ; 5(1): 1215, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357668

RESUMO

In vertebrates, female receptivity to male courtship is highly dependent on ovarian secretion of estrogens and prostaglandins. We recently identified female-specific neurons in the medaka (Oryzias latipes) preoptic area that express Npba, a neuropeptide mediating female sexual receptivity, in response to ovarian estrogens. Here we show by transcriptomic analysis that these neurons express a multitude of neuropeptides, in addition to Npba, in an ovarian-dependent manner, and we thus termed them female-specific, sex steroid-responsive peptidergic (FeSP) neurons. Our results further revealed that FeSP neurons express a prostaglandin E2 receptor gene, ptger4b, in an ovarian estrogen-dependent manner. Behavioral and physiological examination of ptger4b-deficient female medaka found that they exhibit increased sexual receptivity while retaining normal ovarian function and that their FeSP neurons have reduced firing activity and impaired neuropeptide release. Collectively, this work provides evidence that prostaglandin E2/Ptger4b signaling mediates the estrogenic regulation of FeSP neuron activity and female sexual receptivity.


Assuntos
Neuropeptídeos , Oryzias , Animais , Feminino , Masculino , Oryzias/genética , Receptores de Prostaglandina E , Estrogênios , Neurônios , Neuropeptídeos/genética , Prostaglandinas
13.
Commun Biol ; 5(1): 974, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109592

RESUMO

Leydig cells in fetal testes play crucial roles in masculinizing fetuses through androgen production. Gene knockout studies have revealed that growth factors are implicated in fetal Leydig cell (FLC) differentiation, but little is known about the mechanisms regulating this process. We investigate this issue by characterizing FLC progenitor cells using single-cell RNA sequencing. The sequence datasets suggest that thymosin ß10 (Tmsb10) is transiently upregulated in the progenitors. While studying the function of Tmsb10, we reveal that platelet-derived growth factor (PDGF) regulates ciliogenesis through the RAS/ERK and PI3K/AKT pathways, and thereby promotes desert hedgehog (DHH)-dependent FLC differentiation. Tmsb10 expressed in the progenitor cells induces their differentiation into FLCs by suppressing the RAS/ERK pathway. Through characterizing the transiently expressed Tmsb10 in the FLC progenitors, this study unveils the molecular process of FLC differentiation and shows that it is cooperatively induced by DHH and PDGF.


Assuntos
Androgênios , Sistema de Sinalização das MAP Quinases , Androgênios/metabolismo , Feto , Humanos , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Timosina , Proteínas ras/metabolismo
14.
Front Immunol ; 13: 960036, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911740

RESUMO

Regulatory T cells (Tregs) are normally born in the thymus and activated in secondary lymphoid tissues to suppress immune responses in the lymph node and at sites of inflammation. Tregs are also resident in various tissues or accumulate in damaged tissues, which are now called tissue Tregs, and contribute to homeostasis and tissue repair by interacting with non-immune cells. We have shown that Tregs accumulate in the brain during the chronic phase in a mouse cerebral infarction model, and these Tregs acquire the characteristic properties of brain Tregs and contribute to the recovery of neurological damage by interacting with astrocytes. However, the mechanism of tissue Treg development is not fully understood. We developed a culture method that confers brain Treg characteristics in vitro. Naive Tregs from the spleen were activated and efficiently amplified by T-cell receptor (TCR) stimulation in the presence of primary astrocytes. Furthermore, adding IL-33 and serotonin could confer part of the properties of brain Tregs, such as ST2, peroxisome proliferator-activated receptor γ (PPARγ), and serotonin receptor 7 (Htr7) expression. Transcriptome analysis revealed that in vitro generated brain Treg-like Tregs (induced brain Tregs; iB-Tregs) showed similar gene expression patterns as those in in vivo brain Tregs, although they were not identical. Furthermore, in Parkinson's disease models, in which T cells have been shown to be involved in disease progression, iB-Tregs infiltrated into the brain more readily and ameliorated pathological symptoms more effectively than splenic Tregs. These data indicate that iB-Tregs contribute to our understanding of brain Treg development and could also be therapeutic for inflammatory brain diseases.


Assuntos
Astrócitos , Linfócitos T Reguladores , Animais , Astrócitos/metabolismo , Encéfalo , Camundongos , Receptores de Antígenos de Linfócitos T , Receptores de Serotonina/metabolismo
15.
iScience ; 25(8): 104781, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35992084

RESUMO

Despite recent therapeutic advances for multiple myeloma (MM), relapse is very common. Here, we conducted longitudinal single-cell transcriptome sequencing (scRNA-seq) of MM cells from a patient with relapsed MM, treated with multiple anti-myeloma drugs. We observed five subclusters of MM cells, which appeared and/or disappeared in response to the therapeutic pressure, and identified cluster 3 which emerged during lenalidomide treatment and disappeared after proteasome inhibitor (PI) treatment. Among the differentially expressed genes in cluster 3, we found a candidate drug-response gene; pellino E3 ubiquitin-protein ligase family member 2 (PELI2), which is responsible for PI-induced cell death in in vitro assay. Kaplan-Meier survival analysis of database revealed that higher expression of PELI2 is associated with a better prognosis. Our integrated strategy combining longitudinal scRNA-seq analysis, in vitro functional assay, and database analysis would facilitate the understanding of clonal dynamics of MM in response to anti-myeloma drugs and identification of drug-response genes.

16.
Exp Cell Res ; 420(1): 113307, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36028059

RESUMO

The CCAAT motif-binding factor NF-Y consists of three different subunits, NF-YA, NF-YB, and NF-YC. Although it is suggested that NF-Y activity is essential for normal tissue homeostasis, survival, and metabolic function, its precise role in lipid metabolism is not clarified yet. In Drosophila, eye disc specific knockdown of Drosophila NF-YA (dNF-YA) induced aberrant morphology of the compound eye, the rough eye phenotype in adults and mutation of the lipase 4 (lip4) gene suppressed the rough eye phenotype. RNA-seq analyses with dNF-YA knockdown third instar larvae identified the lip4 gene as one of the genes that are up-regulated by the dNF-YA knockdown. We identified three dNF-Y-binding consensuses in the 5'flanking region of the lip4 gene, and a chromatin immunoprecipitation assay with the specific anti-dNF-YA IgG demonstrated dNF-Y binding to this genomic region. The luciferase transient expression assay with cultured Drosophila S2 cells and the lip4 promoter-luciferase fusion genes with and without mutations in the dNF-Y-binding consensuses showed that each of the three dNF-Y consensus sequences negatively regulated lip4 gene promoter activity. Consistent with these results, qRT-PCR analysis with the dNF-YA knockdown third instar larvae revealed that endogenous lip4 mRNA levels were increased by the knockdown of dNF-YA in vivo. The specific knockdown of dNF-YA in the fat body with the collagen-GAL4 driver resulted in smaller oil droplets in the fat body cells. Collectively, these results suggest that dNF-Y is involved in lipid storage through its negative regulation of lip4 gene transcription.


Assuntos
Drosophila , Fatores de Transcrição , Animais , Fator de Ligação a CCAAT/genética , Fator de Ligação a CCAAT/metabolismo , Drosophila/metabolismo , Genes vif , Imunoglobulina G/metabolismo , Lipase/genética , Lipase/metabolismo , Lipídeos , Luciferases/metabolismo , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo
17.
PLoS Comput Biol ; 18(8): e1010436, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36037215

RESUMO

Genomic variations are associated with gene expression levels, which are called expression quantitative trait loci (eQTL). Most eQTL may affect the total gene expression levels by regulating transcriptional activities of a specific promoter. However, the direct exploration of genomic loci associated with promoter activities using RNA-seq data has been challenging because eQTL analyses treat the total expression levels estimated by summing those of all isoforms transcribed from distinct promoters. Here we propose a new method for identifying genomic loci associated with promoter activities, called promoter usage quantitative trait loci (puQTL), using conventional RNA-seq data. By leveraging public RNA-seq datasets from the lymphoblastoid cell lines of 438 individuals from the GEUVADIS project, we obtained promoter activity estimates and mapped 2,592 puQTL at the 10% FDR level. The results of puQTL mapping enabled us to interpret the manner in which genomic variations regulate gene expression. We found that 310 puQTL genes (16.1%) were not detected by eQTL analysis, suggesting that our pipeline can identify novel variant-gene associations. Furthermore, we identified genomic loci associated with the activity of "hidden" promoters, which the standard eQTL studies have ignored. We found that most puQTL signals were concordant with at least one genome-wide association study (GWAS) signal, enabling novel interpretations of the molecular mechanisms of complex traits. Our results emphasize the importance of the re-analysis of public RNA-seq datasets to obtain novel insights into gene regulation by genomic variations and their contributions to complex traits.


Assuntos
Herança Multifatorial , Locos de Características Quantitativas , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas/genética , Locos de Características Quantitativas/genética , RNA-Seq
18.
Nat Commun ; 13(1): 3071, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35654791

RESUMO

The first cell fate commitment during mammalian development is the specification of the inner cell mass and trophectoderm. This irreversible cell fate commitment should be epigenetically regulated, but the precise mechanism is largely unknown in humans. Here, we show that naïve human embryonic stem (hES) cells can transdifferentiate into trophoblast stem (hTS) cells, but primed hES cells cannot. Our transcriptome and methylome analyses reveal that a primate-specific miRNA cluster on chromosome 19 (C19MC) is active in naïve hES cells but epigenetically silenced in primed ones. Moreover, genome and epigenome editing using CRISPR/Cas systems demonstrate that C19MC is essential for hTS cell maintenance and C19MC-reactivated primed hES cells can give rise to hTS cells. Thus, we reveal that C19MC activation confers differentiation potential into trophoblast lineages on hES cells. Our findings are fundamental to understanding the epigenetic regulation of human early development and pluripotency.


Assuntos
MicroRNAs , Células-Tronco Pluripotentes , Animais , Diferenciação Celular/genética , Epigênese Genética , Humanos , Mamíferos , MicroRNAs/genética , Trofoblastos
19.
Cancer Med ; 11(20): 3902-3916, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35416406

RESUMO

BACKGROUND: Open chromatin is associated with gene transcription. Previous studies have shown that the density of mutations in open chromatin regions is lower than that in flanking regions because of the higher accessibility of DNA repair machinery. However, in several cancer types, open chromatin regions show an increased local density of mutations in activated regulatory regions. Although the mutation distribution within open chromatin regions in cancer cells has been investigated, only few studies have focused on their functional implications in cancer. To reveal the impact of highly mutated open chromatin regions on cancer, we investigated the association between mutations in open chromatin regions and their possible functions. METHODS: Whole-genome sequencing data of 18 cancer types were downloaded from the PanCancer Analysis of Whole Genomes and Catalog of Somatic Mutations in Cancer. We quantified the mutations located in open chromatin regions defined by The Cancer Genome Atlas and classified open chromatin regions into three categories based on the number of mutations. Then, we investigated the chromatin state, amplification, and possible target genes of the open chromatin regions with a high number of mutations. We also analyzed the association between the number of mutations in open chromatin regions and patient prognosis. RESULTS: In some cancer types, the proportion of promoter or enhancer chromatin state in open chromatin regions with a high number of mutations was significantly higher than that in the regions with a low number of mutations. The possible target genes of open chromatin regions with a high number of mutations were more strongly associated with cancer than those of other open chromatin regions. Moreover, a high number of mutations in open chromatin regions was significantly associated with a poor prognosis in some cancer types. CONCLUSIONS: These results suggest that highly mutated open chromatin regions play an important role in cancer pathogenesis and can be effectively used to predict patient prognosis.


Assuntos
Cromatina , Neoplasias , Humanos , Cromatina/genética , Genoma Humano , Mutação , Neoplasias/genética , Neoplasias/patologia , Regiões Promotoras Genéticas
20.
NPJ Genom Med ; 7(1): 22, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304488

RESUMO

The search for causative mutations in human genetic disorders has mainly focused on mutations that disrupt coding regions or splice sites. Recently, however, it has been reported that mutations creating splice sites can also cause a range of genetic disorders. In this study, we identified 5656 candidate splice-site-creating mutations (SCMs), of which 3942 are likely to be pathogenic, in 4054 genes responsible for genetic disorders. Reanalysis of exome data obtained from ciliopathy patients led us to identify 38 SCMs as candidate causative mutations. We estimate that, by focusing on SCMs, the increase in diagnosis rate is approximately 5.9-8.5% compared to the number of already known pathogenic variants. This finding suggests that SCMs are mutations worth focusing on in the search for causative mutations of genetic disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA