Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 9: 994827, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36337662

RESUMO

Fasting with varying intensities is used to treat obesity-related diseases. Re-feeding after fasting exhibits hyperphagia and often rebound weight gain. However, the mechanisms underlying the hyperphagia and rebound remain elusive. Here we show that 24 h food restriction (24 h FR) and milder 50% FR, both depress synaptic transmission in the hypothalamic paraventricular nucleus (PVN) and induce acute hyperphagia in rats. 24 h FR is followed by weight rebound but 50% FR is not. Orexigenic neuropeptide Y (NPY) via the Y1 receptor (Y1R) inhibited the miniature excitatory postsynaptic current (mEPSC) on anorexigenic oxytocin neurons in the PVN. 24 h FR and 50% FR activated this neuronal pathway to induce acute hyperphagia on Days 1-3 and Days 1-2 after FR, respectively. 24 h FR induced large mEPSC depression, recurrent hyperphagia on Days 9-12 and rebound weight gain on Days 12-17, whereas 50% FR induced moderate mEPSC depression and sustained weight reduction. Transverse data analysis on Day 1 after 24 h FR and 50% FR demonstrated saturation kinetics for the mEPSC depression-hyperphagiacurve, implying hysteresis. The results reveal FR-driven synaptic plasticity in the NPY-Y1R-oxytocin neurocircuit that drives acute hyperphagia. FR with the intensity that regulates the synapse-feeding relay without hysteresis is the key for successful dieting.

2.
J Physiol Sci ; 68(6): 717-722, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30003408

RESUMO

Several lines of study have suggested that GABA in the hypothalamic feeding center plays a role in promoting food intake. Recent studies revealed that not only NPY/AgRP neurons in the hypothalamic arcuate nucleus (ARC) that co-express GABA but also other GABAergic neurons act as an orexigenic. Here, we review the progress of studies on hypothalamic GABAergic neurons distributed in ARC, dorsomedial hypothalamus (DMH), and lateral hypothalamus (LH). Three advanced technologies have been applied and greatly contributed to the recent progress. Optogenetic (and chemogenetic) approaches map input and output pathways of particular subpopulations of GABAergic neurons. In vivo Ca2+ imaging using GRIN lens and GCaMP can correlate the activity of GABAergic neuron subpopulations with feeding behavior. Single-cell RNA-seq approach clarifies precise transcriptional profiles of GABAergic neuron subpopulations. These approaches have shown diversity of GABAergic neurons and the subpopulation-dependent role in feeding regulation.


Assuntos
Regulação do Apetite , Ingestão de Alimentos , Comportamento Alimentar , Neurônios GABAérgicos/metabolismo , Hipotálamo/metabolismo , Transmissão Sináptica , Ácido gama-Aminobutírico/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Humanos , Hipotálamo/citologia , Vias Neurais/metabolismo , Técnicas de Rastreamento Neuroanatômico , Neuropeptídeo Y/metabolismo , Optogenética , Pró-Opiomelanocortina/metabolismo , Análise de Sequência de RNA , Análise de Célula Única
3.
Elife ; 62017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28762946

RESUMO

POMC neurons integrate metabolic signals from the periphery. Here, we show in mice that food deprivation induces a linear current-voltage relationship of AMPAR-mediated excitatory postsynaptic currents (EPSCs) in POMC neurons. Inhibition of EPSCs by IEM-1460, an antagonist of calcium-permeable (Cp) AMPARs, diminished EPSC amplitude in the fed but not in the fasted state, suggesting entry of GluR2 subunits into the AMPA receptor complex during food deprivation. Accordingly, removal of extracellular calcium from ACSF decreased the amplitude of mEPSCs in the fed but not the fasted state. Ten days of high-fat diet exposure, which was accompanied by elevated leptin levels and increased POMC neuronal activity, resulted in increased expression of Cp-AMPARs on POMC neurons. Altogether, our results show that entry of calcium via Cp-AMPARs is inherent to activation of POMC neurons, which may underlie a vulnerability of these neurons to calcium overload while activated in a sustained manner during over-nutrition.


Assuntos
Cálcio/metabolismo , Agonistas de Aminoácidos Excitatórios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Pró-Opiomelanocortina/metabolismo , Receptores de Glutamato/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo , Potenciais de Ação , Animais , Privação de Alimentos , Camundongos Endogâmicos C57BL
4.
Neuropeptides ; 65: 1-9, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28606559

RESUMO

Adiponectin regulates glucose and lipid metabolism, acting against atherosclerosis and metabolic syndrome. Accumulating evidences suggest that adiponectin acts on the brain including the arcuate nucleus of hypothalamus (ARC). The ARC contains orexigenic neuropeptide Y (NPY)/agouti related peptide (AgRP) neurons and anorexigenic proopiomelanocortin (POMC) neurons, the first order neurons for feeding regulation. We recently reported that intracerebroventricular injection of adiponectin at low glucose level suppressed food intake, while at elevated glucose level it promoted food intake, exhibiting glucose-dependent reciprocal effects. As an underlying neuronal mechanism, physiological level of adiponectin at low glucose activated ARC POMC neurons and at high glucose inactivated them. Now, whether physiological level of adiponectin also affects NPY/AgRP neurons is essential for fully understanding the adiponectin action, but it remains to be clarified. We here report that a physiological dose of adiponectin, in both high and low glucose conditions, attenuated action potential firing without altering resting membrane potential in ARC NPY neurons. This adiponectin effect was abolished by GABAA receptor blockade. Adiponectin enhanced amplitude but not frequency of inhibitory postsynaptic current (IPSC) onto NPY neurons. These results demonstrate that adiponectin enhances IPSC onto NPY neurons to attenuate action potential firing in NPY neurons in a glucose-independent manner, being contrasted to its glucose-dependent effect on POMC neurons.


Assuntos
Adiponectina/fisiologia , Núcleo Arqueado do Hipotálamo/fisiologia , Glucose/fisiologia , Potenciais Pós-Sinápticos Inibidores , Neurônios/fisiologia , Neuropeptídeo Y/fisiologia , Potenciais de Ação , Adiponectina/administração & dosagem , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Glucose/administração & dosagem , Masculino , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Ácido gama-Aminobutírico/fisiologia
5.
Diabetes ; 66(6): 1511-1520, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28292966

RESUMO

Glucose is the primary driver of hypothalamic proopiomelanocortin (POMC) neurons. We show that endothelial hypoxia-inducible factor 1α (HIF-1α) controls glucose uptake in the hypothalamus and that it is upregulated in conditions of undernourishment, during which POMC neuronal activity is decreased. Endothelium-specific knockdown of HIF-1α impairs the ability of POMC neurons to adapt to the changing metabolic environment in vivo, resulting in overeating after food deprivation in mice. The impaired functioning of POMC neurons was reversed ex vivo or by parenchymal glucose administration. These observations indicate an active role for endothelial cells in the central control of metabolism and suggest that central vascular impairments may cause metabolic disorders.


Assuntos
Endotélio/metabolismo , Glucose/metabolismo , Hipotálamo/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Mitocôndrias/metabolismo , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Animais , Comportamento Animal , Western Blotting , Metabolismo Energético , Privação de Alimentos , Técnicas de Silenciamento de Genes , Hiperfagia , Hipotálamo/citologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Imuno-Histoquímica , Camundongos , Microscopia Eletrônica , Mitocôndrias/ultraestrutura , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase em Tempo Real
6.
Mol Metab ; 5(8): 709-715, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27656408

RESUMO

OBJECTIVE: The dorsomedial hypothalamus (DMH) has been considered an orexigenic nucleus, since the DMH lesion reduced food intake and body weight and induced resistance to diet-induced obesity. The DMH expresses feeding regulatory neuropeptides and receptors including neuropeptide Y (NPY), cocaine- and amphetamine-regulated transcript (CART), cholecystokinin (CCK), leptin receptor, and melanocortin 3/4 receptors. However, the principal neurons generating the orexigenic function in the DMH remain to be defined. This study aimed to clarify the role of the DMH GABAergic neurons in feeding regulation by using optogenetics and electrophysiological techniques. METHODS: We generated the mice expressing ChRFR-C167A, a bistable chimeric channelrhodopsin, selectively in GABAergic neurons of DMH via locally injected adeno-associated virus 2. Food intake after optogenetic activation of DMH GABAergic neurons was measured. Electrophysiological properties of DMH GABAergic neurons were measured using slice patch clamp. RESULTS: Optogenetic activation of DMH GABAergic neurons promoted food intake. Leptin hyperpolarized and lowering glucose depolarized half of DMH GABAergic neurons, suggesting their orexigenic property. Optical activation of axonal terminals of DMH GABAergic neurons at the paraventricular nucleus of hypothalamus (PVN), where anorexigenic neurons are localized, increased inhibitory postsynaptic currents on PVN neurons and promoted food intake. CONCLUSION: DMH GABAergic neurons are regulated by metabolic signals leptin and glucose and, once activated, promote food intake via inhibitory synaptic transmission to PVN.

7.
Sci Rep ; 6: 30796, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27503800

RESUMO

Adiponectin regulates glucose and lipid metabolism, acting against metabolic syndrome and atherosclerosis. Accumulating evidence suggest that adiponectin acts on the brain including hypothalamic arcuate nucleus (ARC), where proopiomelanocortin (POMC) neurons play key roles in feeding regulation. Several studies have examined intracerebroventricular (ICV) injection of adiponectin and reported opposite effects, increase or decrease of food intake. These reports used different nutritional states. The present study aimed to clarify whether adiponectin exerts distinct effects on food intake and ARC POMC neurons depending on the glucose concentration. Adiponectin was ICV injected with or without glucose for feeding experiments and administered to ARC slices with high or low glucose for patch clamp experiments. We found that adiponectin at high glucose inhibited POMC neurons and increased food intake while at low glucose it exerted opposite effects. The results demonstrate that glucose level determines excitatory or inhibitory effects of adiponectin on arcuate POMC neuron activity and feeding.


Assuntos
Adiponectina/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Ingestão de Alimentos/fisiologia , Glucose/metabolismo , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/citologia , Camundongos , Neurônios/citologia
8.
Neuropeptides ; 56: 115-23, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26344333

RESUMO

The neurons in the hypothalamus regulate food intake and energy metabolism on reception of systemic energy states. Accumulating evidences have indicated that synaptic transmission on the hypothalamic neurons is modulated by the metabolic condition related to fasted/fed states, and that this modulation of synaptic plasticity plays a role in regulation of feeding. It has been shown that oxytocin (Oxt) neurons in the paraventricular nucleus (PVN) of the hypothalamus sense and integrate various peripheral and central signals and thereby induce satiety. However, whether metabolic conditions regulate the synaptic transmission on Oxt neurons in PVN remains unclear. The present study examined whether the fasted/fed states regulate synaptic transmission on Oxt neurons in PVN. The miniature excitatory postsynaptic currents (mEPSCs) onto Oxt neurons in PVN were increased under ad lib fed condition compared to 24h fasted condition. Furthermore, the NMDA receptor-mediated EPSC on Oxt neurons was increased under fed, compared to fasted, condition. In Oxt neurons, dynein light chain 2 (DYNLL2), a protein suggested to be implicated in the NMDA receptor trafficking to the postsynaptic site, was increased under fed, compared to fasted, condition. The present results suggest that feeding increases excitatory synaptic input on PVN Oxt neurons via mechanisms involving DYNLL2 upregulation and NMDA receptor-mediated synaptic reorganization.


Assuntos
Dineínas do Citoplasma/metabolismo , Jejum , Neurônios/fisiologia , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Potenciais Pós-Sinápticos Excitadores , Masculino , Potenciais Pós-Sinápticos em Miniatura , Plasticidade Neuronal , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos , Ratos Wistar
9.
Am J Physiol Regul Integr Comp Physiol ; 308(5): R360-9, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25540101

RESUMO

Oxytocin (Oxt), a neuropeptide produced in the hypothalamus, is implicated in regulation of feeding. Recent studies have shown that peripheral administration of Oxt suppresses feeding and, when infused subchronically, ameliorates hyperphagic obesity. However, the route through which peripheral Oxt informs the brain is obscure. This study aimed to explore whether vagal afferents mediate the sensing and anorexigenic effect of peripherally injected Oxt in mice. Intraperitoneal Oxt injection suppressed food intake and increased c-Fos expression in nucleus tractus solitarius to which vagal afferents project. The Oxt-induced feeding suppression and c-Fos expression in nucleus tractus solitarius were blunted in mice whose vagal afferent nerves were blocked by subdiaphragmatic vagotomy or capsaicin treatment. Oxt induced membrane depolarization and increases in cytosolic Ca(2+) concentration ([Ca(2+)]i) in single vagal afferent neurons. The Oxt-induced [Ca(2+)]i increases were markedly suppressed by Oxt receptor antagonist. These Oxt-responsive neurons also responded to cholecystokinin-8 and contained cocaine- and amphetamine-regulated transcript. In obese diabetic db/db mice, leptin failed to increase, but Oxt increased [Ca(2+)]i in vagal afferent neurons, and single or subchronic infusion of Oxt decreased food intake and body weight gain. These results demonstrate that peripheral Oxt injection suppresses food intake by activating vagal afferent neurons and thereby ameliorates obesity in leptin-resistant db/db mice. The peripheral Oxt-regulated vagal afferent neuron provides a novel target for treating hyperphagia and obesity.


Assuntos
Fármacos Antiobesidade/administração & dosagem , Ingestão de Alimentos/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Hiperfagia/tratamento farmacológico , Obesidade/tratamento farmacológico , Ocitocina/administração & dosagem , Nervo Vago/efeitos dos fármacos , Potenciais de Ação , Animais , Depressores do Apetite/administração & dosagem , Cálcio/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação para Baixo , Hiperfagia/fisiopatologia , Injeções Intraperitoneais , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/metabolismo , Obesidade/fisiopatologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fármacos do Sistema Sensorial/farmacologia , Núcleo Solitário/efeitos dos fármacos , Núcleo Solitário/metabolismo , Núcleo Solitário/fisiopatologia , Fatores de Tempo , Vagotomia , Nervo Vago/metabolismo , Nervo Vago/fisiopatologia , Aumento de Peso/efeitos dos fármacos
10.
Biochem Biophys Res Commun ; 451(2): 276-81, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25089000

RESUMO

Glucagon-like peptide-1 (GLP-1) receptor agonists have been used to treat type 2 diabetic patients and shown to reduce food intake and body weight. The anorexigenic effects of GLP-1 and GLP-1 receptor agonists are thought to be mediated primarily via the hypothalamic paraventricular nucleus (PVN). GLP-1, an intestinal hormone, is also localized in the nucleus tractus solitarius (NTS) of the brain stem. However, the role of endogenous GLP-1, particularly that in the NTS neurons, in feeding regulation remains to be established. The present study examined whether the NTS GLP-1 neurons project to PVN and whether the endogenous GLP-1 acts on PVN to restrict feeding. Intra-PVN injection of GLP-1 receptor antagonist exendin (9-39) increased food intake. Injection of retrograde tracer into PVN combined with immunohistochemistry for GLP-1 in NTS revealed direct projection of NTS GLP-1 neurons to PVN. Moreover, GLP-1 evoked Ca(2+) signaling in single neurons isolated from PVN. The majority of GLP-1-responsive neurons were immunoreactive predominantly to corticotropin-releasing hormone (CRH) and nesfatin-1, and less frequently to oxytocin. These results indicate that endogenous GLP-1 targets PVN to restrict feeding behavior, in which the projection from NTS GLP-1 neurons and activation of CRH and nesfatin-1 neurons might be implicated. This study reveals a neuronal basis for the anorexigenic effect of endogenous GLP-1 in the brain.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Hormônio Liberador da Corticotropina/fisiologia , Proteínas de Ligação a DNA/fisiologia , Ingestão de Alimentos/fisiologia , Peptídeo 1 Semelhante ao Glucagon/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Ocitocina/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Núcleo Solitário/fisiologia , Animais , Sinalização do Cálcio , Ingestão de Alimentos/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/fisiologia , Receptor do Peptídeo Semelhante ao Glucagon 1 , Humanos , Masculino , Microinjeções , Vias Neurais/fisiologia , Neurônios/fisiologia , Nucleobindinas , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Fragmentos de Peptídeos/administração & dosagem , Ratos , Ratos Wistar , Receptores de Glucagon/antagonistas & inibidores
11.
Nat Neurosci ; 17(7): 908-10, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24880214

RESUMO

We found that leptin receptors were expressed in hypothalamic astrocytes and that their conditional deletion led to altered glial morphology and synaptic inputs onto hypothalamic neurons involved in feeding control. Leptin-regulated feeding was diminished, whereas feeding after fasting or ghrelin administration was elevated in mice with astrocyte-specific leptin receptor deficiency. These data reveal an active role of glial cells in hypothalamic synaptic remodeling and control of feeding by leptin.


Assuntos
Astrócitos/fisiologia , Ingestão de Alimentos/fisiologia , Hipotálamo/fisiologia , Leptina/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Transdução de Sinais/fisiologia , Animais , Contagem de Células , Potenciais Pós-Sinápticos Excitadores/fisiologia , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Hipotálamo/citologia , Imuno-Histoquímica , Hibridização In Situ , Leptina/genética , Masculino , Melanocortinas/fisiologia , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Cultura Primária de Células , Pró-Opiomelanocortina/fisiologia , Troca Gasosa Pulmonar/fisiologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real
12.
Cell ; 155(1): 228-41, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-24074871

RESUMO

The powerful regulation of bone mass exerted by the brain suggests the existence of bone-derived signals modulating this regulation or other functions of the brain. We show here that the osteoblast-derived hormone osteocalcin crosses the blood-brain barrier, binds to neurons of the brainstem, midbrain, and hippocampus, enhances the synthesis of monoamine neurotransmitters, inhibits GABA synthesis, prevents anxiety and depression, and favors learning and memory independently of its metabolic functions. In addition to these postnatal functions, maternal osteocalcin crosses the placenta during pregnancy and prevents neuronal apoptosis before embryos synthesize this hormone. As a result, the severity of the neuroanatomical defects and learning and memory deficits of Osteocalcin(-/-) mice is determined by the maternal genotype, and delivering osteocalcin to pregnant Osteocalcin(-/-) mothers rescues these abnormalities in their Osteocalcin(-/-) progeny. This study reveals that the skeleton via osteocalcin influences cognition and contributes to the maternal influence on fetal brain development.


Assuntos
Encéfalo/crescimento & desenvolvimento , Osteocalcina/metabolismo , Transdução de Sinais , Envelhecimento , Animais , Encéfalo/embriologia , Encéfalo/fisiologia , Feminino , Feto/metabolismo , Camundongos , Neurotransmissores/metabolismo , Gravidez
13.
J Physiol ; 591(7): 1951-66, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23318871

RESUMO

Hypocretin (orexin), a neuropeptide synthesized exclusively in the perifornical/lateral hypothalamus, is critical for drug seeking and relapse, but it is not clear how the circuitry centred on hypocretin-producing neurons (hypocretin neurons) is modified by drugs of abuse and how changes in this circuit might alter behaviours related to drug addiction. In this study, we show that repeated, but not single, in vivo cocaine administration leads to a long-lasting, experience-dependent potentiation of glutamatergic synapses on hypocretin neurons in mice following a cocaine-conditioned place preference (CPP) protocol. The synaptic potentiation occurs postsynaptically and probably involves up-regulation of AMPA-type glutamate receptors on hypocretin neurons. Phosphorylation of cAMP response element-binding protein (CREB) is also significantly increased in hypocretin neurons in cocaine-treated animals, suggesting that CREB-mediated pathways may contribute to synaptic potentiation in these cells. Furthermore, the potentiation of synaptic efficacy in hypocretin neurons persists during cocaine withdrawal, but reverses to baseline levels after prolonged abstinence. Finally, the induction of long-term potentiation (LTP) triggered by a high-frequency stimulation is facilitated in hypocretin neurons in cocaine-treated mice, suggesting that long-lasting changes in synapses onto hypocretin neurons would probably be further potentiated by other stimuli (such as concurrent environmental cues) paired with the drug. In summary, we show here that hypocretin neurons undergo experience-dependent synaptic potentiation that is distinct from that reported in other reward systems, such as the ventral tegmental area, following exposure to cocaine. These findings support the idea that the hypocretin system is important for behavioural changes associated with cocaine administration in animals and humans.


Assuntos
Cocaína/administração & dosagem , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Neurônios/efeitos dos fármacos , Neuropeptídeos/fisiologia , Sinapses/efeitos dos fármacos , Animais , Condicionamento Psicológico , Potenciais Pós-Sinápticos Excitadores , Hipotálamo/fisiologia , Potenciação de Longa Duração , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/fisiologia , Orexinas , Sinapses/fisiologia
14.
Cereb Cortex ; 23(8): 2007-14, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22767632

RESUMO

Prolyl endopeptidase (PREP) is a phylogenetically conserved serine protease and, in humans and rodents, is highly expressed in the brain. Several neuropeptides associated with learning and memory and neurodegenerative disorders have been proposed to be the substrates for PREP, suggesting a possible role for PREP in these processes. However, its physiological function remains elusive. Combining genetic, anatomical, electrophysiological, and behavioral approaches, we show that PREP genetrap mice have decreased synaptic spine density in the CA1 region of the hippocampus, reduced hippocampal long-term potentiation, impaired hippocampal-mediated learning and memory, and reduced growth-associated protein-43 levels when compared with wild-type controls. These observations reveal a role for PREP in mediating hippocampal plasticity and spatial memory formation, with implications for its pharmacological manipulation in diseases related to cognitive impairment.


Assuntos
Região CA1 Hipocampal/ultraestrutura , Espinhas Dendríticas/ultraestrutura , Potenciação de Longa Duração/fisiologia , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Serina Endopeptidases/fisiologia , Sinapses/ultraestrutura , Animais , Região CA1 Hipocampal/fisiologia , Técnicas de Silenciamento de Genes , Masculino , Camundongos , Prolil Oligopeptidases , Serina Endopeptidases/genética
15.
Cell ; 149(6): 1314-26, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22682251

RESUMO

Hypothalamic neurons expressing Agouti-related peptide (AgRP) are critical for initiating food intake, but druggable biochemical pathways that control this response remain elusive. Thus, genetic ablation of insulin or leptin signaling in AgRP neurons is predicted to reduce satiety but fails to do so. FoxO1 is a shared mediator of both pathways, and its inhibition is required to induce satiety. Accordingly, FoxO1 ablation in AgRP neurons of mice results in reduced food intake, leanness, improved glucose homeostasis, and increased sensitivity to insulin and leptin. Expression profiling of flow-sorted FoxO1-deficient AgRP neurons identifies G-protein-coupled receptor Gpr17 as a FoxO1 target whose expression is regulated by nutritional status. Intracerebroventricular injection of Gpr17 agonists induces food intake, whereas Gpr17 antagonist cangrelor curtails it. These effects are absent in Agrp-Foxo1 knockouts, suggesting that pharmacological modulation of this pathway has therapeutic potential to treat obesity.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Ingestão de Alimentos , Fatores de Transcrição Forkhead/metabolismo , Hipotálamo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteína Relacionada com Agouti/genética , Animais , Metabolismo Energético , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Glucose/metabolismo , Leptina/metabolismo , Camundongos
16.
Nat Med ; 17(9): 1121-7, 2011 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-21873987

RESUMO

Previous studies have proposed roles for hypothalamic reactive oxygen species (ROS) in the modulation of circuit activity of the melanocortin system. Here we show that suppression of ROS diminishes pro-opiomelanocortin (POMC) cell activation and promotes the activity of neuropeptide Y (NPY)- and agouti-related peptide (AgRP)-co-producing (NPY/AgRP) neurons and feeding, whereas ROS-activates POMC neurons and reduces feeding. The levels of ROS in POMC neurons were positively correlated with those of leptin in lean and ob/ob mice, a relationship that was diminished in diet-induced obese (DIO) mice. High-fat feeding resulted in proliferation of peroxisomes and elevated peroxisome proliferator-activated receptor γ (PPAR-γ) mRNA levels within the hypothalamus. The proliferation of peroxisomes in POMC neurons induced by the PPAR-γ agonist rosiglitazone decreased ROS levels and increased food intake in lean mice on high-fat diet. Conversely, the suppression of peroxisome proliferation by the PPAR antagonist GW9662 increased ROS concentrations and c-fos expression in POMC neurons. Also, it reversed high-fat feeding-triggered elevated NPY/AgRP and low POMC neuronal firing, and resulted in decreased feeding of DIO mice. Finally, central administration of ROS alone increased c-fos and phosphorylated signal transducer and activator of transcription 3 (pStat3) expression in POMC neurons and reduced feeding of DIO mice. These observations unmask a previously unknown hypothalamic cellular process associated with peroxisomes and ROS in the central regulation of energy metabolism in states of leptin resistance.


Assuntos
Metabolismo Energético/fisiologia , Hipotálamo/metabolismo , Leptina/metabolismo , Neurônios/metabolismo , PPAR gama/metabolismo , Peroxissomos/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Proteína Relacionada com Agouti/metabolismo , Anilidas/farmacologia , Animais , Linhagem Celular , Ingestão de Alimentos/fisiologia , Eletrofisiologia , Proteínas de Fluorescência Verde , Hipotálamo/citologia , Camundongos , Camundongos Obesos , Neuropeptídeo Y/metabolismo , PPAR gama/antagonistas & inibidores , Reação em Cadeia da Polimerase , Pró-Opiomelanocortina/metabolismo
17.
J Physiol ; 589(17): 4157-66, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21727218

RESUMO

The hypocretin/orexin (Hcrt)-containing neurones within the lateral hypothalamus integrate nutritional, energetic and behavioural cues to generate the final output in order to exert their functions. It is still not clear how Hcrt neurones monitor changes in energy status in animals. In brain slices from transgenic mice expressing green fluorescent protein (GFP) exclusively in Hcrt neurones, we examined the roles of intracellular levels of ATP ([ATP](i)) in regulating activities in these cells with conventional and perforated whole-cell recording. By using 'ATP clamp' we demonstrated that membrane potential (V(m)) correlated with the [ATP](i) in Hcrt neurones. Perforated recording revealed a V(m) of -46.1 ± 1.6 mV (n = 18), close to the level measured with an [ATP](i) equal to 5-6 mm (-48.7 ± 1.4 mV, n = 16, 5 mm ATP), suggesting that a unique demand for energy is required to maintain normal functionality in Hcrt cells. A direct disruption of ATP production or reduction in ambient glucose levels resulted in an inhibition of activity in Hcrt neurones. The V(m) was significantly depolarized in Hcrt neurones in sleep-deprived mice as compared with controls (P < 0.01, t test), which was eliminated by experimental manipulations causing the same level of [ATP](i) and K(ATP) channel opening in both groups, suggesting a decrease during sleep and an increase during sustained wakefulness in [ATP](i) in Hcrt cells. In summary, these data demonstrate that a delicate control of activity by monitoring the availability of intracellular energy stores in Hcrt cells may serve as a novel mechanism regulating energy expenditure and behavioural state dependent upon the energy state in animals.


Assuntos
Neuropeptídeos , Orexinas , Animais , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neurônios , Neuropeptídeos/metabolismo , Técnicas de Patch-Clamp
18.
Behav Brain Res ; 221(1): 172-81, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21377499

RESUMO

There has been a long-standing need to develop efficient and standardized behavioral test methods for evaluating higher-order brain functions in mice. Here, we developed and validated a behavioral flexibility test in mice using IntelliCage, a fully automated behavioral analysis system for mice in a group-housed environment. We first developed a "behavioral sequencing task" in the IntelliCage that enables us to assess the learning ability of place discrimination and behavioral sequence for reward acquisition. In the serial reversal learning using the task, the discriminated spatial patterns of the rewarded and never-rewarded places were serially reversed, and thus, mice were accordingly expected to realign the previously acquired behavioral sequence. In general, the tested mice showed rapid acquisition of the behavioral sequencing task and behavioral flexibility in the subsequent serial reversal stages both in intra- and inter-session analyses. It was found that essentially the same results were obtained among three different laboratories, which confirm the high stability of the present test protocol in different strains of mice (C57BL/6, DBA/2, and ICR). In particular, the most trained cohort of C57BL/6 mice achieved a markedly rapid adaptation to the reversal task in the final phase of the long-term serial reversal test, which possibly indicated that the mice adapted to the "reversal rule" itself. In conclusion, the newly developed behavioral test was shown to be a valid assay of behavioral flexibility in mice, and is expected to be utilized in tests of mouse models of cognitive deficits.


Assuntos
Automação Laboratorial/métodos , Modelos Animais , Reversão de Aprendizagem , Aprendizagem Seriada , Animais , Aprendizagem por Discriminação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Endogâmicos ICR , Recompensa , Especificidade da Espécie
19.
Cell Metab ; 10(5): 355-65, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19883614

RESUMO

The hypothalamic paraventricular nucleus (PVN) functions as a center to integrate various neuronal activities for regulating feeding behavior. Nesfatin-1, a recently discovered anorectic molecule, is localized in the PVN. However, the anorectic neural pathway of nesfatin-1 remains unknown. Here we show that central injection of nesfatin-1 activates the PVN and brain stem nucleus tractus solitarius (NTS). In the PVN, nesfatin-1 targets both magnocellular and parvocellular oxytocin neurons and nesfatin-1 neurons themselves and stimulates oxytocin release. Immunoelectron micrographs reveal nesfatin-1 specifically in the secretory vesicles of PVN neurons, and immunoneutralization against endogenous nesfatin-1 suppresses oxytocin release in the PVN, suggesting paracrine/autocrine actions of nesfatin-1. Nesfatin-1-induced anorexia is abolished by an oxytocin receptor antagonist. Moreover, oxytocin terminals are closely associated with and oxytocin activates pro-opiomelanocortin neurons in the NTS. Oxytocin induces melanocortin-dependent anorexia in leptin-resistant Zucker-fatty rats. The present results reveal the nesfatin-1-operative oxytocinergic signaling in the PVN that triggers leptin-independent melanocortin-mediated anorexia.


Assuntos
Melanocortinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Pró-Opiomelanocortina/metabolismo , Transdução de Sinais/fisiologia , Núcleo Solitário/metabolismo , Animais , Anorexia/metabolismo , Comunicação Autócrina , Proteínas de Ligação ao Cálcio , Proteínas de Ligação a DNA , Leptina/metabolismo , Camundongos , Células Neuroendócrinas/metabolismo , Nucleobindinas , Comunicação Parácrina , Ratos , Ratos Zucker
20.
Nihon Rinsho ; 67(2): 277-86, 2009 Feb.
Artigo em Japonês | MEDLINE | ID: mdl-19202900

RESUMO

The brain controls feeding via two components; homeostatic and accessory regulation. Homeostatic regulation is executed by the hypothalamic centers. Accessory regulation occurs in response to environmental conditions and stimuli such as memory, stress, emotion, reward and hedonic feeling, which are operated by the limbic system, particularly the hippocampus and amygdala. Nutrients and visceral hormones, representing peripheral metabolic states, regulate activity of these brain areas, which is performed by direct action after entering through blood-brain area and by sending information via the vagus nerve and brain stem. We here review how the hippocampus and amygdala as well as gut, brain stem and hypothalamus function and interact with each other to achieve integrative regulation of feeding.


Assuntos
Apetite/fisiologia , Tronco Encefálico/fisiologia , Trato Gastrointestinal/fisiologia , Hipotálamo/fisiologia , Sistema Límbico/fisiologia , Animais , Ingestão de Alimentos/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA