Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Analyst ; 149(19): 4872-4880, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39133040

RESUMO

Stone cultural heritage buildings are frequently affected by different alteration phenomena and in particular, on heritage marbles the presence of chromatic discolouration, as the red stains, is one of the most widespread. In this paper, small fragments of red stains originated on marble exposed to different environmental contexts were analysed to reveal the presence and distribution of lead compounds at the micro-scale level. The samples come from slabs of historical religious buildings in Florence (Santa Maria del Fiore Cathedral and the San Giovanni Baptistery) and from the monumental fountains conserved in the Medicean Villa La Petraia (Florence). The presence and distribution of lead compounds: minium (Pb3O4), carbonates such as cerussite (PbCO3) and hydrocerussite (Pb3(CO3)2(OH)2) and plattnerite (PbO2), was revealed using 2D high lateral resolution micro-X-Ray Powder Diffraction (µ-XRPD) and µ-Raman spectroscopy. Additional information were provided by Scanning Electron Microscopy, the elemental distribution performed with micro-X-Ray Fluorescence mapping enable to verify the possible presence of light elements and the use of FTIR chemical imaging confirmed the absence of organic compounds.

2.
Analyst ; 149(8): 2338-2350, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38323806

RESUMO

The increased adoption of non-invasive laser-based techniques for analysis of cultural assets has recently called into question the non-invasiveness of the techniques in practical operation. The methods to assess the occurrence of radiation-induced alteration on paintings are very limited and none of them can predict damage. Here we present a novel multimodal imaging approach to understand the time and spatial evolution and types of laser-induced surface alterations, through simultaneous monitoring using visible and near infrared (VIS-NIR) reflectance hyperspectral imaging (HSI) and thermal imaging during Raman spectroscopy. The resultant physical and chemical changes were examined in detail by optical coherence tomography and synchrotron based micro-X-ray powder diffraction. HSI was found to be the most sensitive in detecting laser induced alternations compared with conventional methods. It is orders of magnitude more sensitive than Raman spectroscopy and even synchrotron-based micro-X-ray powder diffraction. In cases of thermally driven alterations, transient and reversible reflectance changes were found to be the first indications of laser-induced modifications and can therefore be used as precursors to prevent damage. VIS-NIR reflectance spectroscopy should be used to monitor laser-based analysis and potentially other radiation-based techniques in situ to mitigate laser induced alteration.

3.
Eur Phys J Plus ; 137(10): 1102, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213053

RESUMO

A mobile remote standoff Raman spectroscopy system operational at typical distances of 10 m was developed specifically for research of historical sites and wall paintings recently. Here we present an upgrade to that system informed by a thorough experimental investigation of the relevant laser-induced degradation issues. Reflectance spectroscopy as a more sensitive technique than Raman spectroscopy was used for monitoring and a new phenomenon of reversible alterations was detected in many paint samples at very low laser intensities of less than 1 W/cm2 when Raman measurements detected no changes. Contrary to conventional wisdom, the intensity threshold for safe operation was found to decrease significantly for larger incident irradiation area in the case of a vermilion oil paint sample. Damage threshold in intensity for each material needs to be determined for different spot sizes, which can be orders of magnitude lower for 1 mm spot size compared with micro-Raman. Results from this study is also relevant to portable Raman systems which use similarly large spot sizes. However, the larger spot size still generates more Raman photons overall under safe operation than micro-Raman systems. Continuous-wave (CW) lasers are found to be best suited to efficient, that is more Raman signal detected over a given measurement time, and safe Raman operation than ns-pulse lasers at the same wavelength. While the damage threshold in intensity for ns-pulse lasers is much higher than that of CW lasers, the pulse energy allowed in one pulse for safe operation is still too low to allow detection of Raman signal, and the need for multiple pulses makes pulse laser inefficient owing to the low repetition rate necessary to ensure adequate heat dissipation between pulses. The safety of the upgraded system was evaluated and found that no permanent laser-induced degradation was detected within 60 s of laser irradiation for any of the paint samples.

4.
Langmuir ; 29(36): 11457-70, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23919634

RESUMO

Alcohol dispersions of Ca(OH)2 nanoparticles, the so-called nanolimes, are emerging as an effective conservation material for the consolidation of stone, mortars, and plasters present in old masonry and/or mural paintings. To better understand how this treatment operates, to optimize its performance and broaden its applications, here we study the nano and microstructural characteristics, carbonation behavior, and consolidation efficacy of colloidal alcohol dispersions of Ca(OH)2 nanoparticles produced by both homogeneous (commercial nanolime) and heterogeneous phase synthesis (aged slaked lime and carbide lime putties). We observe that the alcohol not only provides a high colloidal stability to Ca(OH)2 particles, but also affects the kinetics of carbonation and CaCO3 polymorph selection. This is due to the pseudomorphic replacement of Ca(OH)2 particles by calcium alkoxides upon reaction with ethanol or 2-propanol. The extent of this replacement reaction depends on Ca(OH)2 size and time. Hydrolysis of alkoxides speeds up the carbonation process and increases the CaCO3 yield. The higher degree of transformation into calcium alkoxide of both the commercial nanolime and the carbide lime fosters metastable vaterite formation, while calcite precipitation is promoted upon carbonation of the aged slaked lime due its lower reactivity, which limits calcium alkoxide formation. A higher consolidation efficacy in terms of strength gain of treated porous stone is achieved in the latter case, despite the fact that the carbonation is much faster and reaches a higher yield in the former ones. Formation of alkoxides, which has been neglected in previous studies, needs to be considered when applying nanolime treatments. These results show that the use Ca(OH)2 nanoparticle dispersions prepared with either aged slaked lime or carbide lime putties is an economical and effective conservation alternative to commercial nanolimes produced by homogeneous phase synthesis. Ultimately, this study contributes to show that nanotechnology can help saving the built and sculptural heritage.


Assuntos
Álcoois/química , Hidróxido de Cálcio/química , Materiais de Construção , Nanopartículas/química , Pinturas , Sulfato de Bário/química , Compostos de Cálcio/química , Óxidos/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA