Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
bioRxiv ; 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38293064

RESUMO

Neuronal aging and neurodegenerative diseases are accompanied by proteostasis collapse, while cellular factors that trigger it are not identified. Impaired mitochondrial transport in the axon is another feature of aging and neurodegenerative diseases. Using Drosophila, we found that genetic depletion of axonal mitochondria causes dysregulation of translation and protein degradation. Axons with mitochondrial depletion showed abnormal protein accumulation, and autophagic defects. Lowering neuronal ATP levels by blocking glycolysis did not reduce autophagy, suggesting that autophagic defects are associated with mitochondrial distribution. We found eIF2ß was upregulated by depletion of axonal mitochondria via proteome analysis. Phosphorylation of eIF2α, another subunit of eIF2, was lowered, and global translation was suppressed. Neuronal overexpression of eIF2ß phenocopied the autophagic defects and neuronal dysfunctions, and lowering eIF2ß expression rescued those perturbations caused by depletion of axonal mitochondria. These results indicate the mitochondria-eIF2ß axis maintains proteostasis in the axon, of which disruption may underly the onset and progression of age-related neurodegenerative diseases.

2.
Sci Rep ; 13(1): 13230, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580339

RESUMO

Japan has implemented a cluster-based approach for coronavirus disease 2019 (COVID-19) from the pandemic's beginning based on the transmission heterogeneity (overdispersion) of severe acute respiratory coronavirus 2 (SARS-CoV-2). However, studies analyzing overdispersion of transmission among new variants of concerns (VOCs), especially for Omicron, were limited. Thus, we aimed to clarify how the transmission heterogeneity has changed with the emergence of VOCs (Alpha, Delta, and Omicron) using detailed contact tracing data in Yamagata Prefecture, Japan. We estimated the time-varying dispersion parameter ([Formula: see text]) by fitting a negative binomial distribution for each transmission generation. Our results showed that even after the emergence of VOCs, there was transmission heterogeneity of SARS-CoV-2, with changes in [Formula: see text] during each wave. Continuous monitoring of transmission dynamics is vital for implementing appropriate measures. However, a feasible and sustainable epidemiological analysis system should be established to make this possible.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Japão/epidemiologia , COVID-19/epidemiologia , Busca de Comunicante , Taxa Respiratória
4.
Am J Case Rep ; 23: e936496, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36089753

RESUMO

BACKGROUND Anosmia, which is loss of smell, is a recognized complication of coronavirus disease 2019 (COVID-19) due to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which may persist after recovery from infection. Retronasal olfactory testing includes both subjective questionnaires and physiological tests that can be used to evaluate recovery of smell. This report presents the case of a 32-year-old man with persistent loss of smell following COVID-19 whose recovery was evaluated by retronasal olfactory testing. CASE REPORT The patient was a 32-year-old man with confirmed SARS-CoV-2 infection. He was aware of his olfactory dysfunction. Using the orthonasal test, a T&T Olfactometer 2 months after disease onset showed an olfactory threshold score of 2.2 points (mild decrease) and olfactory identification result of 3.4 points (moderate decrease). However, the retronasal intravenous olfactory test showed no response, indicating severe olfactory dysfunction. After 3 months of olfactory training and therapy with steroidal nasal drops (Fluticasone Furoate, 27.5 µg/day) and oral vitamins (Mecobalamin, 1500 µg/day), the patient's orthonasal test olfactory threshold score improved to 0.6 points (normal), and his olfactory identification result improved to 1.2 points (mild decrease). Although the retronasal intravenous olfactory test showed a weak response, a reaction did occur. At this time, the patient did not report any improvement in his symptoms. CONCLUSIONS This report has shown that in cases of persistent anosmia following COVID-19, retronasal olfactory testing can be used to evaluate recovery of the sense of smell.


Assuntos
COVID-19 , Transtornos do Olfato , Adulto , Anosmia , COVID-19/complicações , Humanos , Masculino , Transtornos do Olfato/diagnóstico , Transtornos do Olfato/etiologia , SARS-CoV-2 , Olfato/fisiologia
5.
Cancers (Basel) ; 14(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35892902

RESUMO

The impact of the site of the Fenton reaction, i.e., hydroxyl radical (•OH) generation, on cytotoxicity was investigated by estimating cell lethality in rat thymocytes. Cells were incubated with ferrous sulfate (FeSO4) and hydrogen peroxide (H2O2), or pre-incubated with FeSO4 and then H2O2 was added after medium was replaced to remove iron ions or after the medium was not replaced. Cell lethality in rat thymocytes was estimated by measuring cell sizes using flow cytometry. High extracellular concentrations of FeSO4 exerted protective effects against H2O2-induced cell death instead of enhancing cell lethality. The pre-incubation of cells with FeSO4 enhanced cell lethality induced by H2O2, whereas a pre-incubation with a high concentration of FeSO4 exerted protective effects. FeSO4 distributed extracellularly or on the surface of cells neutralized H2O2 outside cells. Cytotoxicity was only enhanced when the Fenton reaction, i.e., the generation of •OH, occurred inside cells. An assessment of plasmid DNA breakage showed that •OH induced by the Fenton reaction system did not break DNA. Therefore, the main target of intracellularly generated •OH does not appear to be DNA.

6.
Jpn J Infect Dis ; 74(6): 522-529, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-33790065

RESUMO

Public health interventions have played an important role in controlling coronavirus disease 2019 (COVID-19), which is a rapidly spreading infectious disease. To contribute to future COVID-19 countermeasures, we aimed to verify the results of the countermeasures employed by public health centers (PHCs) against the first wave of COVID-19 in Yamagata Prefecture, Japan (Yamagata). Between January and May 2020, 1,253 patients suspected of SARS-CoV-2 infection were invited for testing. Simultaneously, based on retrospective contact tracings, PHCs investigated the infection sources and transmission routes of laboratory-confirmed COVID-19 cases and tested 928 contacts. Consequently, 69 cases were confirmed between March 31 and May 4, 58 of whom were from among the contacts (84.1%; 95% confidence interval [CI] 75.5-92.7). The spread of infection was triggered in cases harboring epidemiological links outside Yamagata. Subsequently, the number of cases rapidly increased. However, PHCs identified epidemiological links in 61 (88.4%; 95% CI 80.8-96.0) of the 69 cases, and transmission chains up to the fifth generation. Finally, the spread of infection ended after approximately one month. Our results indicate that the identification of infection sources and active case finding from contacts based on retrospective contact tracing was likely to be an effective strategy in ending the first wave of COVID-19 in Yamagata.


Assuntos
COVID-19 , Busca de Comunicante , COVID-19/epidemiologia , Humanos , Japão/epidemiologia , Estudos Retrospectivos
7.
J Clin Biochem Nutr ; 68(2): 123-130, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33879963

RESUMO

Relatively young (4-week-old) selenium deficient (SeD) mice, which lack the activity of selenium-dependent glutathione peroxidase (GSH-Px) isomers, were prepared using torula yeast-based SeD diet. Mice were fed the torula yeast-based SeD diet and ultra-pure water. Several different timings for starting the SeD diet were assessed. The weekly time course of liver comprehensive GSH-Px activity after weaning was monitored. Protein expression levels of GPx1 and 4 in the liver were measured by Western blot analysis. Gene expression levels of GPx1, 2, 3, 4, and 7 in the liver were measured by quantitative real-time PCR. Apoptotic activity of thymocytes after hydrogen peroxide (H2O2) exposure was compared. Thirty-day survival rates after whole-body X-ray irradiation were estimated. Pre-birth or right-after-birth starting of the SeD diet in dams was unable to lead to creation of SeD mice due to neonatal death. This suggests that Se is necessary for normal birth and healthy growing of mouse pups. Starting the mother on the SeD diet from 2 weeks after giving birth (SeD-trial-2w group) resulted in a usable SeD mouse model. The liver GSH-Px activity of the SeD-trial-2w group was almost none from 4 week olds, but the mice survived for more than 63 weeks. Protein and gene expression of GPx1 was suppressed in the SeD-trial-2w group, but that of GPx4 was not. The thymocytes of the SeD-trial-2w group were sensitive to H2O2-induced apoptosis. The SeD-trial-2w group was sensitive to whole-body X-ray irradiation compared with control mice. The SeD-trial-2w model may be a useful animal model for H2O2/hydroperoxide-induced oxidative stress.

8.
iScience ; 24(1): 101979, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33490892

RESUMO

Brain neurons play a central role in organismal aging, but there is conflicting evidence about the role of neuronal glucose availability because glucose uptake and metabolism are associated with both aging and extended life span. Here, we analyzed metabolic changes in the brain neurons of Drosophila during aging. Using a genetically encoded fluorescent adenosine triphosphate (ATP) biosensor, we found decreased ATP concentration in the neuronal somata of aged flies, correlated with decreased glucose content, expression of glucose transporter and glycolytic enzymes and mitochondrial quality. The age-associated reduction in ATP concentration did not occur in brain neurons with suppressed glycolysis or enhanced glucose uptake, suggesting these pathways contribute to ATP reductions. Despite age-associated mitochondrial damage, increasing glucose uptake maintained ATP levels, suppressed locomotor deficits, and extended the life span. Increasing neuronal glucose uptake during dietary restriction resulted in the longest life spans, suggesting an additive effect of enhancing glucose availability during a bioenergetic challenge on aging.

9.
FEBS Lett ; 595(7): 960-968, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33496978

RESUMO

A total of 10-20% of plasma membrane proteins are anchored by glycosylphosphatidylinositol (GPI). GPI is attached to proteins by GPI transamidase (GPI-T), which contains five subunits named PIGK, PIGS, PIGT, PIGU, and GPAA1. We previously reported that PIGT localizes near the nucleus in Drosophila. However, localizations of the other four subunits remain unknown. Here, we show that a catalytic subunit of GPI-T, PIGK, mainly localizes to the endoplasmic reticulum (ER), while the other four subunits localize to the nuclear envelope (NE) and ER. The NE/ER localization ratio of PIGS differs between cell types and developmental stages. Our results suggest that GPI-T catalyzes GPI attachment in the ER and the other four subunits may have other unknown functions in the NE.


Assuntos
Aciltransferases/genética , Moléculas de Adesão Celular/genética , Retículo Endoplasmático/genética , Glicoproteínas de Membrana/genética , Aciltransferases/ultraestrutura , Animais , Domínio Catalítico/genética , Drosophila melanogaster/genética , Proteínas de Membrana/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , Mutação/genética , Membrana Nuclear/genética
10.
iScience ; 23(8): 101369, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32736066

RESUMO

Cyclin E is a key factor for S phase entry, and deregulation of Cyclin E results in developmental defects and tumors. Therefore, proper cycling of Cyclin E is crucial for normal growth. Here we found that transcription factors Apontic (Apt) and E2f1 cooperate to induce cyclin E in Drosophila. Functional binding motifs of Apt and E2f1 are clustered in the first intron of Drosophila cyclin E and directly contribute to the cyclin E transcription. Knockout of apt and e2f1 together abolished Cyclin E expression. Furthermore, Apt up-regulates Retinoblastoma family protein 1 (Rbf1) for proper chromatin compaction, which is known to repress cyclin E. Notably, Apt-dependent up-regulation of Cyclin E and Rbf1 is evolutionarily conserved in mammalian cells. Our findings reveal a unique mechanism underlying the induction and subsequent decline of Cyclin E expression.

11.
Biol Open ; 9(1)2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31862863

RESUMO

We previously identified the Drosophila yata mutant, which showed phenotypes including progressive vacuolization of the white-coloured compound eye, progressive shrinkage of the brain and a shortened lifespan. The yata gene was shown to be involved in controlling intracellular trafficking of the Amyloid precursor protein-like protein, which is an orthologue of Amyloid precursor protein, which is a causative molecule of Alzheimer's disease. In this study, we examined the phenotype of the compound eye of the yata mutant using electron microscopy and confocal microscopy. We found that abnormal cellular structures that seemed to originate from bleb-like structures and contained vesicles and organelles, such as multivesicular bodies and autophagosomes, were observed in aged white; yata mutants and aged white mutants. These structures were not observed in newly eclosed flies and the presence of the structures was suppressed in flies grown under constant dark conditions after eclosion. The structures were not observed in newly eclosed red-eyed yata mutants or wild-type flies, but were observed in very aged red-eyed wild-type flies. Thus, our data suggest that the observed structures are formed as a result of changes associated with exposure to light after eclosion in white mutants, white; yata mutants and aged flies.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Olho Composto de Artrópodes/metabolismo , Olho Composto de Artrópodes/ultraestrutura , Proteínas de Drosophila/genética , Drosophila/genética , Drosophila/ultraestrutura , Proteínas do Olho/genética , Mutação , Proteínas Quinases/genética , Fatores Etários , Animais , Estudos de Associação Genética , Longevidade/genética , Fenótipo
12.
Nano Lett ; 20(1): 22-32, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31797667

RESUMO

Formins are one of the central players in the assembly of most actin networks in cells. The sensitivity of these processive molecular machines to mechanical tension is now well established. However, how the activity of formins is affected by geometrical constraints related to network architecture, such as filament cross-linking and formin spatial confinement, remains largely unknown. Combining microfluidics and micropatterning, we reconstituted in vitro mDia1 formin-elongated filament bundles induced by fascin, with different geometrical constraints on the formins, and measured the impact of these constraints on formin elongation rate and processivity. When filaments are not bundled, the anchoring details of formins have only a mild impact on their processivity and do not affect their elongation rate. When formins are unanchored, we show that filament bundling by fascin reduces both their elongation rate and their processivity. Strikingly, when filaments elongated by surface-anchored formins are cross-linked together, formin elongation rate immediately decreases and processivity is reduced up to 24-fold depending on the cumulative impact of formin rotational and translational freedom. Our results reveal an unexpected crosstalk between the constraints at the filament and the formin levels. We anticipate that in cells the molecular details of formin anchoring to the plasma membrane strongly modulate formin activity at actin filament barbed ends.


Assuntos
Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Forminas/metabolismo , Citoesqueleto de Actina/química , Animais , Membrana Celular/química , Citoesqueleto/química , Forminas/química , Humanos
13.
J Muscle Res Cell Motil ; 41(1): 175-188, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31749040

RESUMO

The regulated assembly of actin filaments is essential in nearly all cell types. Studying actin assembly dynamics can pose many technical challenges. A number of these challenges can be overcome by using microfluidics to observe and manipulate single actin filaments under an optical microscope. In particular, microfluidics can be tremendously useful for applying different mechanical stresses to actin filaments and determining how the physical context of the filaments affects their regulation by biochemical factors. In this review, we summarize the main features of microfluidics for the study of actin assembly dynamics, and we highlight some recent developments that have emerged from the combination of microfluidics and other techniques. We use two case studies to illustrate our points: the rapid assembly of actin filaments by formins and the disassembly of filaments by actin depolymerizing factor (ADF)/cofilin. Both of these protein families play important roles in cells. They regulate actin assembly through complex molecular mechanisms that are sensitive to the filaments' mechanical context, with multiple activities that need to be quantified separately. Microfluidics-based experiments have been extremely useful for gaining insight into the regulatory actions of these two protein families.


Assuntos
Citoesqueleto de Actina/metabolismo , Fenômenos Biomecânicos/fisiologia , Microfluídica/métodos , Humanos
14.
Biochem Biophys Res Commun ; 505(3): 664-670, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30286955

RESUMO

Intercellular endosomes (IEs) are endocytosed vesicles shuttled through the adherens junctions (AJs) between two neighboring epidermal cells during Drosophila dorsal closure. The cell-to-cell transport of IEs requires DE-cadherin (DE-cad), microtubules (MTs) and kinesin. However, the mechanisms by which IEs can be transported through the AJs are unknown. Here, we demonstrate the presence of AJ-associated pores with MTs traversing through the pores. Live imaging allows direct visualization of IEs being transported through the AJ-associated pores. By using an optogenetic dimerization system, we observe that the dimerized IE-kinesin complexes move across AJs into the neighboring cell. The AJ-associated pores also allow intercellular movement of soluble proteins. Importantly, most epidermal cells form dorsoventral-oriented two-cell syncytia. Together, we present a model in which an AJ-associated pore mediates the intercellular transport of IEs and proteins between two cells in direct contact.


Assuntos
Junções Aderentes/metabolismo , Citoplasma/metabolismo , Proteínas de Drosophila/metabolismo , Endossomos/metabolismo , Animais , Transporte Biológico , Caderinas/genética , Caderinas/metabolismo , Drosophila/embriologia , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Células Epidérmicas/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microtúbulos/metabolismo , Porosidade
15.
J Clin Biochem Nutr ; 63(2): 97-101, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30279619

RESUMO

The generation of localized hydroxyl radical (•OH) in aqueous samples by low linear energy transfer irradiation was investigated. Several concentrations of 5,5-dimethyl-1-pyrroline-N-oxid solution (from 0.5 to 1,680 mmol/L) were prepared and irradiated with an identical dose of X-ray or γ-ray. The density of •OH generation in aqueous solution was evaluated by the electron paramagnetic resonance spin-trapping technique using 5,5-dimethyl-1-pyrroline-N-oxid as an electron paramagnetic resonance spin-trapping agent. The relationship between the molecular density of 5,5-dimethyl-1-pyrroline-N-oxid in the samples and the concentration of 5,5-dimethyl-1-pyrroline-N-oxid-OH generated in the irradiated samples was analyzed. Two different characteristic linear trends were observed in the 5,5-dimethyl-1-pyrroline-N-oxid-OH/5,5-dimethyl-1-pyrroline-N-oxid plots, which suggested •OH generation in two fashions, i.e., mmol/L- and mol/L-level local concentrations. The dose, dose rate, and/or the energy of photon irradiation did not affect the shapes of the 5,5-dimethyl-1-pyrroline-N-oxid-OH/5,5-dimethyl-1-pyrroline-N-oxid plots. Moreover, the addition of 5 mmol/L caffeine could cancel the contribution of mmol/L-level •OH generation, leaving a trace of mol/L-level •OH generation. Thus, the localized mmol/L- and mol/L-level generations of •OH, which were independent of experimental parameters such as dose, dose rate, and/or the energy of photon of low linear energy transfer radiation, were established.

16.
J Cell Sci ; 131(20)2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30266758

RESUMO

Membrane lipid biosynthesis is a complex process that takes place in various intracellular compartments. Glycosylphosphatidylinositol (GPI), a lipid involved in membrane anchoring of some proteins, is synthesized by the PIG enzymes. Most PIGs are localized to the endoplasmic reticulum (ER), but Drosophila PIG-B (DmPIG-B) is localized to the nuclear envelope (NE). To determine whether the NE localization of DmPIG-B is functionally important, we defined the determinants of localization and generated an ER-localized form, denoted DmPIG-B[ER]. The enzymatic activity of DmPIG-B[ER] was comparable to that of NE-localized DmPIG-B[NE]. Expression of DmPIG-B[ER] inefficiently rescued the lethality of the PIG-B mutant, whereas DmPIG-B[NE] rescued this lethality fully. DmPIG-B[ER] was preferentially degraded by lysosomes, suggesting that the NE localization is essential for function and stability of the protein. In addition, we found that the region of the ER proximal to the NE is the site of translation of GPI-anchored proteins and addition of GPI. Thus, the NE and proximal ER may provide a platform for efficient GPI anchoring.


Assuntos
Drosophila/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Proteínas de Membrana/metabolismo , Membrana Nuclear/metabolismo , Sequência de Aminoácidos , Animais
17.
Elife ; 72018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29799413

RESUMO

Formins are major regulators of actin networks. They enhance actin filament dynamics by remaining processively bound to filament barbed ends. How biochemical and mechanical factors affect formin processivity are open questions. Monitoring individual actin filaments in a microfluidic flow, we report that formins mDia1 and mDia2 dissociate faster under higher ionic strength and when actin concentration is increased. Profilin, known to increase the elongation rate of formin-associated filaments, surprisingly decreases the formin dissociation rate, by bringing formin FH1 domains in transient contact with the barbed end. In contrast, piconewton tensile forces applied to actin filaments accelerate formin dissociation by orders of magnitude, largely overcoming profilin-mediated stabilization. We developed a model of formin conformations showing that our data indicates the existence of two different dissociation pathways, with force favoring one over the other. How cells limit formin dissociation under tension is now a key question for future studies.


Assuntos
Actinas/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , NADPH Desidrogenase/metabolismo , Profilinas/metabolismo , Animais , Forminas , Humanos , Camundongos , Microfluídica , Coelhos
18.
Org Biomol Chem ; 16(8): 1272-1276, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29384168

RESUMO

The quantitative evaluation of changes in the redox state induced by low linear energy transfer (LET) radiations such as the plateau region of heavy-ion beams via formation of reactive oxygen species is of considerable importance to eliminate the adverse effects of radiation therapy on normal tissues adjacent to a tumour. In this study, a 2,2-diphenyl-1-picrylhydrazyl radical (DPPH˙) was used as a redox probe to estimate the redox states of protic and aprotic solutions irradiated by low LET carbon-ion (C-ion) beams. The dose dependence of the decrease in the absorption band due to DPPH˙ (which was solubilised by ß-cyclodextrin (ß-CD) in water) after irradiation with low LET C-ion beams (13 keV µm-1) was similar to that after X-irradiation. Similar results were obtained when H2O was replaced with methanol or acetonitrile although the slope values of the plots of the absorbance changes vs. radiation doses were twice larger as compared to the case in ß-CD-containing H2O. Moreover, DPPH˙ was more susceptible to the C-ion beam than to X-rays in isopropyl myristate (IPM), which is one of the saturated fatty acid esters.

19.
RSC Adv ; 8(19): 10158-10162, 2018 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35540490

RESUMO

About two thirds of biological damage due to low linear energy transfer (LET) radiation, such as X-rays and the plateau region of heavy-ion beams, is known to be caused by the hydroxyl radical (˙OH), the most powerful reactive oxygen species (ROS), generated via ionisation and excitation of water molecules. Thus, compounds having an efficient scavenging activity against ROS are expected to exhibit a radioprotective activity. A planar catechin analogue, where an isopropyl fragment was introduced into the catechol ring of (+)-catechin, showed an efficient protective effect against X-ray induced apoptosis in rat thymocytes compared to (+)-catechin. The planar catechin scavenged 2,2-diphenyl-1-picrylhydrazyl radicals (DPPH˙) solubilised in water by ß-cyclodextrin about 10-fold faster than (+)-catechin in phosphate buffer (0.1 M, pH 7.4) at 298 K. Furthermore, the experimental log P value of the planar catechin (1.22) is reported to be significantly larger than that of (+)-catechin (0.44). The higher radical-scavenging activity and lipophilicity of the planar catechin than those of (+)-catechin may contribute in part to the higher protective activity against X-ray-induced apoptosis in rat thymocytes.

20.
PLoS One ; 12(11): e0187248, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29095923

RESUMO

The segmental pattern of the vertebrate body is established via the periodic formation of somites from the presomitic mesoderm (PSM). This periodical process is controlled by the cyclic and synchronized activation of Notch signaling in the PSM. Protein O-fucosyltransferase1 (Pofut1), which transfers O-fucose to the EGF domains of the Notch1 receptor, is indispensable for Notch signaling activation. The Drosophila homologue Ofut1 was reported to control Notch localization via two different mechanisms, working as a chaperone for Notch or as a regulator of Notch endocytosis. However, these were found to be independent of O-fucosyltransferase activity because the phenotypes were rescued by Ofut1 mutants lacking O-fucosyltransferase activity. Pofut1 may also be involved in the Notch receptor localization in mice. However, the contribution of enzymatic activity of Pofut1 to the Notch receptor dynamics remains to be elucidated. In order to clarify the importance of the O-fucosyltransferase activity of Pofut1 for Notch signaling activation and the protein localization in the PSM, we established mice carrying point mutations at the 245th a.a. or 370-372th a.a., highly conserved amino-acid sequences whose mutations disrupt the O-fucosyltransferase activity of both Drosophila Ofut1 and mammalian Pofut1, with the CRISPR/Cas9 mediated genome-engineering technique. Both mutants displayed the same severely perturbed somite formation and Notch1 subcellular localization defects as the Pofut1 null mutants. In the mutants, Pofut1 protein, but not RNA, became undetectable by E9.5. Furthermore, both wild-type and mutant Pofut1 proteins were degraded through lysosome dependent machinery. Pofut1 protein loss in the point mutant embryos caused the same phenotypes as those observed in Pofut1 null embryos.


Assuntos
Fucosiltransferases/metabolismo , Mutação Puntual , Receptor Notch1/metabolismo , Transdução de Sinais , Somitos/crescimento & desenvolvimento , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Regulação para Baixo , Fucosiltransferases/genética , Camundongos , Processamento Pós-Transcricional do RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA