Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
1.
Plants (Basel) ; 13(4)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38498509

RESUMO

This study confirms for the first time that the significant red coloration of Euglena gracilis is induced by bonito stock (BS), a traditional Japanese food, and intense red light exposure (605~660 nm, 1000~1300 µmol photons/m2/s). Under the condition, excessive photosynthetic activity destroyed many chloroplasts, while carotenoids were maintained, resulting in the formation of reddened cells. The HPLC analysis revealed that diadinoxanthin was the primary carotenoid present in reddened cells. Additionally, an undefined xanthophyll, not produced under normal culture conditions, was synthesized and suggested to contain a C=O bond. While it has been reported that strong light stress can increase the total carotenoid content of cells, this study did not verify this claim, and it should be investigated further in future research. Under white light irradiation conditions (90 µmol photons/m2/s) in BS medium, no reddening of cells was observed, and good growth was achieved (over four times the cell density in CM medium on the seventh day). This cell suspension is considered to have a high nutritional value because it is composed of functional food, BS and E. gracilis. The fact that this method does not involve genetic modification suggests the possibility of industrial applications, including food use, even in reddened cells.

2.
Bioengineered ; 15(1): 2314888, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38375815

RESUMO

Cadmium (Cd) has become a severe issue in relatively low concentration and attracts expert attention due to its toxicity, accumulation, and biomagnification in living organisms. Cd does not have a biological role and causes serious health issues. Therefore, Cd pollutants should be reduced and removed from the environment. Microalgae have great potential for Cd absorption for waste treatment since they are more environmentally friendly than existing treatment methods and have strong metal sorption selectivity. This study evaluated the tolerance and ability of the microalga Tetratostichococcus sp. P1 to remove Cd ions under acidic conditions and reveal mechanisms based on transcriptomics analysis. The results showed that Tetratostichococcus sp. P1 had a high Cd tolerance that survived under the presence of Cd up to 100 µM, and IC50, the half-maximal inhibitory concentration value, was 57.0 µM, calculated from the change in growth rate based on the chlorophyll content. Long-term Cd exposure affected the algal morphology and photosynthetic pigments of the alga. Tetratostichococcus sp. P1 removed Cd with a maximum uptake of 1.55 mg g-1 dry weight. Transcriptomic analysis revealed the upregulation of the expression of genes related to metal binding, such as metallothionein. Group A, Group B transporters and glutathione, were also found upregulated. While the downregulation of the genes were related to photosynthesis, mitochondria electron transport, ABC-2 transporter, polysaccharide metabolic process, and cell division. This research is the first study on heavy metal bioremediation using Tetratostichococcus sp. P1 and provides a new potential microalga strain for heavy metal removal in wastewater.[Figure: see text]Abbreviations:BP: Biological process; bZIP: Basic Leucine Zipper; CC: Cellular component; ccc1: Ca (II)-sensitive cross complementary 1; Cd: Cadmium; CDF: Cation diffusion facilitator; Chl: Chlorophyll; CTR: Cu TRansporter families; DAGs: Directed acyclic graphs; DEGs: Differentially expressed genes; DVR: Divinyl chlorophyllide, an 8-vinyl-reductase; FPN: FerroportinN; FTIR: Fourier transform infrared; FTR: Fe TRansporter; GO: Gene Ontology; IC50: Growth half maximal inhibitory concentration; ICP: Inductively coupled plasma; MF: molecular function; NRAMPs: Natural resistance-associated aacrophage proteins; OD: Optical density; RPKM: Reads Per Kilobase of Exon Per Million Reads Mapped; VIT1: Vacuolar iron transporter 1 families; ZIPs: Zrt-, Irt-like proteins.


Assuntos
Clorófitas , Metais Pesados , Cádmio/toxicidade , Bioacumulação , Perfilação da Expressão Gênica , Plantas/metabolismo , Clorófitas/genética , Clorófitas/metabolismo , Clorofila
3.
Cells ; 13(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38334622

RESUMO

Neuronal cell death is a key mechanism involved in the development and exacerbation of Parkinson's disease (PD). The excessive production of reactive oxygen species (ROS) is a major cause leading to neuronal death; therefore, compounds that prevent oxidative stress-dependent neuronal death may be promising as a preventive method for PD. Ergothioneine is a natural amino acid with antioxidant properties, and its protective functions in the body are attracting attention. However, there has been no investigation into the protective functions of ergothioneine using in vivo and in vitro PD models. Thus, in this study, we analyzed the efficacy of ergothioneine against 6-hydroxydopamine (6-OHDA)-dependent neuronal cell death using immortalized hypothalamic neurons (GT1-7 cells). First, we found that ergothioneine prevents 6-OHDA-dependent neuronal cell death by suppressing ROS overproduction in GT1-7 cells. The cytoprotective effect of ergothioneine was partially abolished by verapamil, an inhibitor of OCTN1, which is involved in ergothioneine uptake. Furthermore, ergothioneine-rich Rice-koji (Ergo-koji) showed cytoprotective and antioxidant effects similar to those of ergothioneine. Taken together, these results suggest that ergothioneine or foods containing ergothioneine may be an effective method for preventing the development and progression of PD.


Assuntos
Ergotioneína , Ergotioneína/farmacologia , Ergotioneína/metabolismo , Oxidopamina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Neurotoxinas/farmacologia , Morte Celular , Antioxidantes/farmacologia , Antioxidantes/metabolismo
4.
Microb Biotechnol ; 17(2): e14393, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38332568

RESUMO

Transgene-free genome editing based on clustered regularly interspaced short palindromic repeats (CRISPR) technology is key to achieving genetic engineering in microalgae for basic research and industrial applications. Euglena gracilis, a unicellular phytoflagellate microalga, is a promising biomaterial for foods, feeds, cosmetics and biofuels. However, methods for the genetic manipulation of E. gracilis are still limited. Here, we developed a high-efficiency, transgene-free genome editing method for E. gracilis using Lachnospiraceae bacterium CRISPR-associated protein 12a (LbCas12a) ribonucleoprotein (RNP) complex, which complements the previously established Cas9 RNP-based method. Through the direct delivery of LbCas12a-containing RNPs, our method reached mutagenesis rates of approximately 77.2-94.5% at two different E. gracilis target genes, Glucan synthase-like 2 (EgGSL2) and a phytoene synthase gene (EgcrtB). Moreover, in addition to targeted mutagenesis, we demonstrated efficient knock-in and base editing at the target site using LbCas12a-based RNPs with a single-stranded DNA donor template in E. gracilis. This study extends the genetic engineering capabilities of Euglena to accelerate its basic use for research and engineering for bioproduction.


Assuntos
Euglena gracilis , Edição de Genes , Edição de Genes/métodos , Sistemas CRISPR-Cas , Euglena gracilis/genética , Engenharia Genética , Ribonucleoproteínas/genética
5.
Intern Med ; 63(5): 717-720, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37407456

RESUMO

Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm driven by the BCR::ABL1 tyrosine kinase. Tyrosine kinase inhibitors (TKIs) have been established as standard therapies for CML. However, some CML patients experience TKI intolerance. Asciminib was approved for CML patients either intolerant or refractory to TKI therapy. We herein report a 63-year-old CML patient who underwent renal transplantation and exhibited TKI intolerance. He was switched to asciminib, which achieved a deep molecular response without exacerbation of the renal function. Our experience revealed that asciminib is effective and safe for CML patients complicated with chronic kidney disease.


Assuntos
Transplante de Rim , Leucemia Mielogênica Crônica BCR-ABL Positiva , Niacinamida/análogos & derivados , Pirazóis , Insuficiência Renal Crônica , Masculino , Humanos , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/efeitos adversos , Proteínas de Fusão bcr-abl , Leucemia Mielogênica Crônica BCR-ABL Positiva/complicações , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico
6.
Integr Cancer Ther ; 22: 15347354231195323, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37646331

RESUMO

Extracts from Euglena gracilis have been shown to prevent cancer growth in mouse models. However, the molecular mechanism of this anti-cancer activity has not been determined nor has the effect of Euglena extracts on tobacco smoke carcinogen-induced carcinogenesis. Here, we investigate the hypothesis that this anti-cancer activity is a result of changes in the intestinal microbiota induced by oral administration of the extract. We found that a Euglena gracilis water extract prevents lung tumorigenesis induced by a tobacco smoke-specific carcinogen (NNK) in mice treated either 2 weeks before or 10 weeks after NNK injection. Both of these treatment regimens are associated with significant increases in 27 microbiota metabolites found in the mouse feces, including large increases in triethanolamine, salicylate, desaminotyrosine, N-acetylserine, glycolate, and aspartate. Increases in the short-chain fatty acids (SCFAs) including acetate, propionate and butyrate are also observed. We also detected a significant attenuation of lung carcinoma cell growth through the induction of cell cycle arrest and apoptosis caused by low levels of SCFAs. This study provides strong evidence of anti-cancer activity in Euglena gracilis extracts against tobacco smoke carcinogen-induced tumorigenesis and demonstrates that this activity is linked to increased production of specific gut microbiota metabolites and the resultant induction of cell cycle arrest and apoptosis of lung carcinoma cells.


Assuntos
Carcinoma , Euglena gracilis , Microbioma Gastrointestinal , Neoplasias Pulmonares , Poluição por Fumaça de Tabaco , Camundongos , Animais , Carcinógenos/toxicidade , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/prevenção & controle , Poluição por Fumaça de Tabaco/efeitos adversos , Carcinogênese/induzido quimicamente
7.
ACS Biomater Sci Eng ; 9(6): 3414-3424, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37159164

RESUMO

Developing delivery vehicles that achieve drug accumulation in the liver and transferability into hepatic stellate cells (HSCs) across the liver sinusoidal endothelium is essential to establish a treatment for hepatic fibrosis. We previously developed hyaluronic acid (HA)-coated polymeric micelles that exhibited affinity to liver sinusoidal endothelial cells. HA-coated micelles possess a core-shell structure of self-assembled biodegradable poly(l-lysine)-b-poly(lactic acid) AB-diblock copolymer (PLys+-b-PLLA), and its exterior is coated with HA through polyion complex formation via electrostatic interaction between anionic HAs and cationic PLys segments. In this study, we prepared HA-coated micelles entrapping olmesartan medoxomil (OLM), an anti-fibrotic drug, and evaluated their possibility as drug delivery vehicles. HA-coated micelles exhibited specific cellular uptake into LX-2 cells (human HSC line) in vitro. In vivo imaging analysis after intravenous (i.v.) injection of HA-coated micelles into mice revealed that the micelles exhibited high accumulation in the liver. Observation of mouse liver tissue sections suggested that HA-coated micelles were distributed in liver tissue. Furthermore, i.v. injection of HA-coated micelles entrapping OLM showed a remarkable anti-fibrotic effect against the liver cirrhosis mouse model. Therefore, HA-coated micelles are promising candidates as drug delivery vehicles for the clinical management of liver fibrosis.


Assuntos
Ácido Hialurônico , Micelas , Camundongos , Humanos , Animais , Células Endoteliais , Sistemas de Liberação de Medicamentos/métodos , Polímeros/química , Cirrose Hepática/tratamento farmacológico
8.
Int J Mol Sci ; 24(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37240261

RESUMO

The cholinergic efferent network from the medial septal nucleus to the hippocampus is crucial for learning and memory. This study aimed to clarify whether hippocampal cholinergic neurostimulating peptide (HCNP) has a rescue function in the cholinergic dysfunction of HCNP precursor protein (HCNP-pp) conditional knockout (cKO). Chemically synthesized HCNP or a vehicle were continuously administered into the cerebral ventricle of HCNP-pp cKO mice and littermate floxed (control) mice for two weeks via osmotic pumps. We immunohistochemically measured the cholinergic axon volume in the stratum oriens and functionally evaluated the local field potential in the CA1. Furthermore, choline acetyltransferase (ChAT) and nerve growth factor (NGF) receptor (TrkA and p75NTR) abundances were quantified in wild-type (WT) mice administered HCNP or the vehicle. As a result, HCNP administration morphologically increased the cholinergic axonal volume and electrophysiological theta power in HCNP-pp cKO and control mice. Following the administration of HCNP to WT mice, TrkA and p75NTR levels also decreased significantly. These data suggest that extrinsic HCNP may compensate for the reduced cholinergic axonal volume and theta power in HCNP-pp cKO mice. HCNP may function complementarily to NGF in the cholinergic network in vivo. HCNP may represent a therapeutic candidate for neurological diseases with cholinergic dysfunction, e.g., Alzheimer's disease and Lewy body dementia.


Assuntos
Fator de Crescimento Neural , Neuropeptídeos , Camundongos , Animais , Fator de Crescimento Neural/metabolismo , Neuropeptídeos/metabolismo , Hipocampo/metabolismo , Colinérgicos/metabolismo , Colina O-Acetiltransferase/genética , Colina O-Acetiltransferase/metabolismo
9.
Small ; 19(36): e2301161, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37127870

RESUMO

Cdx Hg1- x Se/HgS/Cdy Zn1- y S core/multi-shell quantum dots (QDs) exhibiting bright tissue-penetrating shortwave infrared (SWIR; 1000-1700 nm) photoluminescence (PL) are engineered. The new structure consists of a quasi-type-II Cdx Hg1- x Se/HgS core/inner shell domain creating luminescent bandgap tunable across SWIR window and a wide-bandgap Cdy Zn1- y S outer shell boosting the PL quantum yield (QY). This compositional sequence also facilitates uniform and coherent shell growth by minimizing interfacial lattice mismatches, resulting in high QYs in both organic (40-80%) and aqueous (20-70%) solvents with maximum QYs of 87 and 73%, respectively, which are comparable to those of brightest visible-to-near infrared QDs. Moreover, they maintain bright PL in a photocurable resin (QY 40%, peak wavelength ≈ 1300 nm), enabling the fabrication of SWIR-luminescent composites of diverse morphology and concentration. These composites are used to localize controlled amounts of SWIR QDs inside artificial (Intralipid) and porcine tissues and quantitatively evaluate the applicability as luminescent probes for deep-tissue imaging.

10.
Sci Rep ; 13(1): 7123, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37130945

RESUMO

This study aimed to investigate the physiological responses of Euglena gracilis (E. gracilis) when subjected to semicontinuous N-starvation (N-) for an extended period in open ponds. The results indicated that the growth rates of E. gracilis under the N- condition (11 ± 3.3 g m-2 d-1) were higher by 23% compared to the N-sufficient (N+, 8.9 ± 2.8 g m-2 d-1) condition. Furthermore, the paramylon content of E.gracilis was above 40% (w/w) of dry biomass in N- condition compared to N+ (7%) condition. Interestingly, E. gracilis exhibited similar cell numbers regardless of nitrogen concentrations after a certain time point. Additionally, it demonstrated relatively smaller cell size over time, and unaffected photosynthetic apparatus under N- condition. These findings suggest that there is a tradeoff between cell growth and photosynthesis in E. gracilis, as it adapts to semi-continuous N- conditions without a decrease in its growth rate and paramylon productivity. Notably, to the author's knowledge, this is the only study reporting high biomass and product accumulation by a wild-type E. gracilis strain under N- conditions. This newly identified long-term adaptation ability of E. gracilis may offer a promising direction for the algal industry to achieve high productivity without relying on genetically modified organisms.


Assuntos
Euglena gracilis , Fotossíntese , Biomassa
11.
Front Nutr ; 10: 1113118, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051126

RESUMO

Paramylon, a ß-1,3-glucan storage polysaccharide derived from Euglena gracilis, has various health benefits, such as anti-obesity effects and modulation of immune function. However, whether paramylon intake affects the circadian clock remains unknown. In this study, we examined the effect of paramylon intake on the circadian clock. The results showed that the paramylon intake regulated peripheral clocks in mice. Furthermore, cecal pH and short-chain fatty acid concentrations after paramylon intake were measured. The correlation between changes in the expression of clock-related genes and alterations in the intestinal environment was confirmed. In addition, peripheral clock entrainment by paramylon intake was not observed in antibiotic-treated mice whose gut microbiota was weakened. These findings suggest that the regulation of the circadian clock by paramylon intake was mediated by changes in gut microbiota. In addition, the entraining effect of paramylon intake was also confirmed in mice bred under conditions mimicking social jetlag, which implies that paramylon intake may contribute to recovery from social jetlag. Thus, the appropriate consumption of paramylon may have a beneficial effect on health from a chrono-nutritional perspective.

12.
Animals (Basel) ; 13(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36899652

RESUMO

This study was conducted to provide alternative high-quality feed and to reduce methane production using a mixture of the minimum effective levels of Euglena gracilis, EG, and Asparagopsis taxiformis, AT. This study was performed as a 24 h in vitro batch culture. Chemical analysis demonstrated that EG is a highly nutritive material with 26.1% protein and 17.7% fat. The results showed that the supplementation of AT as a feed additive at 1 and 2.5% of the diet reduced methane production by 21 and 80%, respectively, while the inclusion of EG in the diet at 10 and 25% through partially replacing the concentrate mixture reduced methane production by 4 and 11%, respectively, with no adverse effects on fermentation parameters. The mixtures of AT 1% with both EG 10% and EG 25% had a greater reductive potential than the individual supplementation of these algae in decreasing methane yield by 29.9% and 40.0%, respectively, without adverse impacts on ruminal fermentation characteristics. These results revealed that the new feed formulation had a synergistic effect in reducing methane emissions. Thus, this approach could provide a new strategy for a sustainable animal production industry.

13.
Appl Microbiol Biotechnol ; 107(9): 3021-3032, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36941437

RESUMO

Euglena gracilis (E. gracilis) is a unicellular microalga with various applications in medicine, agriculture, aquaculture, health supplement, and jet fuel production. Euglena possibly solves population growth and exhaustion of fossil resources. Efficient cell harvesting is needed for the industry, and the gravity sedimentation method is low cost and does not require any equipment, although it has low efficiency. This study showed that the gravity sedimentation of E. gracilis cells is improved by cultivation in the presence of ethanol (EtOH). The gravity sedimentation of E. gracilis cells cultivated under 0.5% or 1.0% EtOH conditions was faster than that cultivated without EtOH. The mean calculated cell diameter was also found to be largest in cells cultivated under 0.5% or 1.0% EtOH conditions compared to that in cells cultivated without EtOH. Intracellular paramylon content, cell shapes, and motility differed between cells cultivated under 0.5% or 1.0% EtOH conditions and in the absence of EtOH. The results suggest that E. gracilis cultivation with EtOH leads to increased cell productivity, paramylon production, and efficient cell harvesting. KEY POINTS: • Euglena gracilis is an edible microalga producing value-added metabolites. • Ethanol addition upregulates E. gracilis growth and paramylon accumulation. • Gravity sedimentation is accelerated by ethanol-grown E. gracilis cells.


Assuntos
Euglena gracilis , Euglena gracilis/metabolismo , Eucariotos , Suplementos Nutricionais
14.
Plant Physiol ; 191(4): 2414-2426, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36611254

RESUMO

The eyespot apparatus is an organelle that forms carotenoid-rich globules in diverse flagellated microalgae and functions in phototaxis. The euglenophytes have structurally and functionally distinct eyespot apparatuses from chlorophytes. ß-Carotene is the most abundant pigment detected in chlorophytes' eyespots, while xanthophylls such as zeaxanthin and diadinoxanthin have been suggested to function in euglenophytes' eyespots. Here, we investigated the association between carotenoid composition and eyespot formation via pathway-scale mutagenesis using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated genome editing in the euglenophyte Euglena gracilis. Lycopene cyclase (lcy) mutants exhibited sole lycopene accumulation, defective red eyespots, and phototactic insensitivity. Conversely, ß-carotene hydroxylase (cytochrome P450 97h1, cyp97h1) mutants accumulated ß-carotene and its hydroxylated products ß-cryptoxanthin and zeaxanthin and formed phototactic eyespot apparatuses, while cyp97h1 cyp97f2 double mutants were deficient in ß-carotene hydroxylation and mostly lacked functional eyespots. Thus, zeaxanthin is required for the stable formation of functional eyespots in E. gracilis, highlighting evolutionary differences between euglenophytes and chlorophytes in the metabolic regulation of photoreactive organelle formation.


Assuntos
Euglena gracilis , beta Caroteno , Zeaxantinas/metabolismo , beta Caroteno/metabolismo , Euglena gracilis/genética , Fototaxia , Carotenoides/metabolismo , Organelas/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo
15.
Nutrients ; 14(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36558358

RESUMO

Wild watermelon contains various nutrients, but the effect of its acute ingestion on arterial stiffness is unclear. This study aimed to investigate whether a single bout of acute ingestion of wild watermelon-extracted juice decreased arterial stiffness concomitant with an increase in nitric oxide (NO) production. Twelve healthy young female participants were tested under two conditions in a randomized, double-blind crossover study: (1) a beverage containing 90 g of wild watermelon extract and (2) a control beverage: a placebo. Pulse wave velocity (PWV), an index of arterial stiffness, blood flow, and plasma nitrate/nitrite (NOx) levels were measured in the supine position at 30, 60, and 90 min after the intake of each beverage. The changes in femoral-ankle PWV were significantly reduced after wild watermelon-extracted juice intake compared to those in the placebo group. Additionally, the changes in blood flow in the posterior tibial artery and plasma NOx levels after intake of wild watermelon-extracted juice were significantly increased compared to those in the placebo group. These data show that acute ingestion of wild watermelon-extracted juice reduces peripheral (lower limb) arterial stiffness and increases NO bioavailability. To confirm these associations, more detailed investigations of the nutrients that influence these effects should be conducted.


Assuntos
Citrullus , Rigidez Vascular , Humanos , Feminino , Estudos Cross-Over , Óxido Nítrico/farmacologia , Projetos Piloto , Análise de Onda de Pulso , Suplementos Nutricionais , Ingestão de Alimentos , Pressão Sanguínea
16.
Biol Open ; 11(11)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36412269

RESUMO

Euglenoids (Euglenida) are unicellular flagellates possessing exceptionally wide geographical and ecological distribution. Euglenoids combine a biotechnological potential with a unique position in the eukaryotic tree of life. In large part these microbes owe this success to diverse genetics including secondary endosymbiosis and likely additional sources of genes. Multiple euglenoid species have translational applications and show great promise in production of biofuels, nutraceuticals, bioremediation, cancer treatments and more exotically as robotics design simulators. An absence of reference genomes currently limits these applications, including development of efficient tools for identification of critical factors in regulation, growth or optimization of metabolic pathways. The Euglena International Network (EIN) seeks to provide a forum to overcome these challenges. EIN has agreed specific goals, mobilized scientists, established a clear roadmap (Grand Challenges), connected academic and industry stakeholders and is currently formulating policy and partnership principles to propel these efforts in a coordinated and efficient manner.


Assuntos
Euglena , Euglena/fisiologia , Biotecnologia , Simbiose
17.
Sci Rep ; 12(1): 19161, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357544

RESUMO

Cholinergic activation can enhance glutamatergic activity in the hippocampus under pathologic conditions, such as Alzheimer's disease. The aim of the present study was to elucidate the relationship between glutamatergic neural functional decline and cholinergic neural dysfunction in the hippocampus. We report the importance of hippocampal cholinergic neurostimulating peptide (HCNP) in inducing acetylcholine synthesis in the medial septal nucleus. Here, we demonstrate that HCNP-precursor protein (pp) knockout (KO) mice electrophysiologically presented with glutamatergic dysfunction in the hippocampus with age. The impairment of cholinergic function via a decrease in vesicular acetylcholine transporter in the pre-synapse with reactive upregulation of the muscarinic M1 receptor may be partly involved in glutamatergic dysfunction in the hippocampus of HCNP-pp KO mice. The results, in combination with our previous reports that show the reduction of hippocampal theta power through a decrease of a region-specific choline acetyltransferase in the stratum oriens of CA1 and the decrease of acetylcholine concentration in the hippocampus, may indicate the defined cholinergic dysfunction in HCNP-pp KO mice. This may also support that HCNP-pp KO mice are appropriate genetic models for cholinergic functional impairment in septo-hippocampal interactions. Therefore, according to the cholinergic hypothesis, the model mice might are potential partial pathological animal models for Alzheimer's disease.


Assuntos
Doença de Alzheimer , Proteína de Ligação a Fosfatidiletanolamina , Camundongos , Animais , Camundongos Knockout , Proteína de Ligação a Fosfatidiletanolamina/genética , Doença de Alzheimer/metabolismo , Acetilcolina/metabolismo , Hipocampo/metabolismo , Colinérgicos/metabolismo
19.
Nutrients ; 14(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35889858

RESUMO

A water extract derived from the isolated cell walls of Chlorella sorokiniana (C. sorokiniana, Chlorella water extract, CWE) was analyzed for the presence of lipopolysaccharide (LPS)-related material via the Limulus amebocyte lysate (LAL) assay and evaluated for its growth stimulation effect on the bone marrow cells and splenocytes in vitro cell cultures. The extract contained low levels of LPS-related material, and a mass spectrum suggested that the extract contained many components, including a low level of a lipid A precursor, a compound known as lipid X, which is known to elicit a positive response in the LAL assay. Treatment with the CWE dose- and time-dependently stimulated the growth of mouse bone marrow cells (BMCs) and splenocytes (SPLs). Treatment with the CWE also increased specific BMC subpopulations, including antigen-presenting cells (CD19+ B cells, 33D1+ dendritic cells and CD68+ macrophages), and CD4+ and CD8+ T cells, but decreased the number of LY6G+ granulocytes. Treatment with the CWE also increased cytokine mRNA associated with T cell activation, including TNFα, IFNγ, and granzyme B in human lymphoblasts. The present study indicates that the cell wall fraction of C.sorokiniana contains an LPS-like material and suggests a candidate source for the bioactivity that stimulates growth of both innate and adaptive immune cells.


Assuntos
Chlorella , Animais , Células da Medula Óssea , Linfócitos T CD8-Positivos , Parede Celular , Humanos , Lipopolissacarídeos , Camundongos , Baço , Água
20.
Microsyst Nanoeng ; 8: 68, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757522

RESUMO

The electrical penetration of the cell membrane is vital for determining the cell interior via impedance cytometry. Herein, we propose a method for determining the conductivity of the cell membrane through the tilting levels of impedance pulses. When electrical penetration occurs, a high-frequency current freely passes through the cell membrane; thus, the intracellular distribution can directly act on the high-frequency impedance pulses. Numerical simulation shows that an uneven intracellular component distribution can affect the tilting levels of impedance pulses, and the tilting levels start increasing when the cell membrane is electrically penetrated. Experimental evidence shows that higher detection frequencies (>7 MHz) lead to a wider distribution of the tilting levels of impedance pulses when measuring cell populations with four-frequency impedance cytometry. This finding allows us to determine that a detection frequency of 7 MHz is able to pass through the membrane of Euglena gracilis (E. gracilis) cells. Additionally, we provide a possible application of four-frequency impedance cytometry in the biomass monitoring of single E. gracilis cells. High-frequency impedance (≥7 MHz) can be applied to monitor these biomass changes, and low-frequency impedance (<7 MHz) can be applied to track the corresponding biovolume changes. Overall, this work demonstrates an easy determination method for the electrical penetration of the cell membrane, and the proposed platform is applicable for the multiparameter assessment of the cell state during cultivation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA