Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
Zoolog Sci ; 41(1): 105-116, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38587523

RESUMO

Melatonin (N-acetyl-5-methoxytryptamine) is an indolamine that is synthesized from tryptophan in the pineal glands of vertebrates through four enzymatic reactions. Melatonin is a quite unique bioactive substance, characterized by a combination of both receptor-mediated and receptor-independent actions, which promote the diverse effects of melatonin. One of the main functions of melatonin, via its membrane receptors, is to regulate the circadian or seasonal rhythm. In mammals, light information, which controls melatonin synthesis, is received in the eye, and transmitted to the pineal gland, via the suprachiasmatic nucleus, where the central clock is located. Alternatively, in many vertebrates other than mammals, the pineal gland cells, which are involved in melatonin synthesis and secretion and in the circadian clock, directly receive light. Recently, it has been reported that melatonin possesses several metabolic functions, which involve bone and glucose, in addition to regulating the circadian rhythm. Melatonin improves bone strength by inhibiting osteoclast activity. It is also known to maintain brain activity during sleep by increasing glucose uptake at night, in an insulin-independent manner. Moreover, as a non-receptor-mediated action, melatonin has antioxidant properties. Melatonin has been proven to be a potent free radical scavenger and a broad-spectrum antioxidant, even protecting organisms against radiation from space. Melatonin is a ubiquitously distributed molecule and is found in bacteria, unicellular organisms, fungi, and plants. It is hypothesized that melatonin initially functioned as an antioxidant, then, in vertebrates, it combined this role with the ability to regulate rhythm and metabolism, via its receptors.


Assuntos
Relógios Circadianos , Melatonina , Animais , Melatonina/farmacologia , Antioxidantes , Vertebrados , Mamíferos
2.
Sci Rep ; 14(1): 6277, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491056

RESUMO

The cholecystokinin (CCK)/gastrin family peptides are involved in regulation of feeding and digestion in vertebrates. In the ascidian Ciona intestinalis type A (Ciona robusta), cionin, a CCK/gastrin family peptide, has been identified. Cionin is expressed exclusively in the central nervous system (CNS). In contrast, cionin receptor expression has been detected in the CNS, digestive tract, and ovary. Although cionin has been reported to be involved in ovulation, its physiological function in the CNS remains to be investigated. To elucidate its neural function, in the present study, we analyzed the expression of cionin and cionin receptors in the CNS. Cionin was expressed mainly in neurons residing in the anterior region of the cerebral ganglion. In contrast, the gene expressin of the cionin receptor gene CioR1, was detected in the middle part of the cerebral ganglion and showed a similar expression pattern to that of VACHT, a cholinergic neuron marker gene. Moreover, CioR1 was found to be expressed in cholinergic neurons. Consequently, these results suggest that cionin interacts with cholinergic neurons as a neurotransmitter or neuromodulator via CioR1. This study provides insights into a biological role of a CCK/gastrin family peptide in the CNS of ascidians.


Assuntos
Colecistocinina , Ciona intestinalis , Neuropeptídeos , Animais , Feminino , Colecistocinina/genética , Colecistocinina/metabolismo , Gastrinas , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Sequência de Aminoácidos , Sistema Nervoso Central
3.
Front Cell Dev Biol ; 12: 1340089, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38385024

RESUMO

Electromagnetic fields (EMFs) have received widespread attention as effective, noninvasive, and safe therapies across a range of clinical applications for bone disorders. However, due to the various frequencies of devices, their effects on tissues/cells are vary, which has been a bottleneck in understanding the effects of EMFs on bone tissue. Here, we developed an in vivo model system using zebrafish scales to investigate the effects of extremely low-frequency EMFs (ELF-EMFs) on fracture healing. Exposure to 10 millitesla (mT) of ELF-EMFs at 60 Hz increased the number of both osteoblasts and osteoclasts in the fractured scale, whereas 3 or 30 mT did not. Gene expression analysis revealed that exposure to 10 mT ELF-EMFs upregulated wnt10b and Wnt target genes in the fractured scale. Moreover, ß-catenin expression was enhanced by ELF-EMFs predominantly at the fracture site of the zebrafish scale. Inhibition of Wnt/ß-catenin signaling by IWR-1-endo treatment reduced both osteoblasts and osteoclasts in the fractured scale exposed to ELF-EMFs. These results suggest that ELF-EMFs promote both osteoblast and osteoclast activity through activation of Wnt/ß-catenin signaling in fracture healing. Our data provide in vivo evidence that ELF-EMFs generated with a widely used commercial AC power supply have a facilitative effect on fracture healing.

4.
Toxicology ; 500: 153687, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38040083

RESUMO

Exposure to multiple pesticides in daily life has become an important public health concern. However, the combined effects of pesticide mixtures have not been fully elucidated by the conventional toxicological testing used for individual chemicals. Grouping of chemicals by mode of action using common key events (KEs) in the adverse outcome pathway (AOP) as endpoints could be applied for efficient risk assessment of combined exposure to multiple chemicals. The purpose of this study was to investigate whether exposure to multiple pesticides has synergistic neurotoxic effects on mammalian nervous systems. According to the AOP-based approach, we evaluated the effects of 10 current-use pesticides (4 neonicotinoids, 4 pyrethroids and 2 phenylpyrazoles) on the common KEs in AOPs for neurotoxicity, such as KEs involving mitochondrial and proteolytic functions, in a mammalian neuronal cell model. Our data showed that several pyrethroids and phenylpyrazoles partly shared the effects on several common KEs, including decreases in mitochondrial membrane potential and proteasome activity and increases in autophagy activity. Furthermore, we also found that combined exposure to a type-I pyrethroid permethrin or a type-II pyrethroid deltamethrin and the phenylpyrazole fipronil decreased the cell viability and the benchmark doses much more than either single exposure, indicating that the pair exhibited synergistic effects, since the combination indexes were less than 1. These findings revealed that novel pairs of different classes of pesticides with similar effects on common KEs exhibited synergistic neurotoxicity and provide new insights into the risk assessment of combined exposure to multiple chemicals.


Assuntos
Rotas de Resultados Adversos , Síndromes Neurotóxicas , Praguicidas , Piretrinas , Animais , Humanos , Praguicidas/toxicidade , Piretrinas/toxicidade , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/metabolismo , Medição de Risco , Mamíferos
5.
Data Brief ; 49: 109361, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37496521

RESUMO

Deep ocean water (DOW) is the water obtained from depth of >200 m below the surface of Earth's oceans and is characterized by rich nutrients and cleanliness [1,2]. We have recently reported that DOW suppresses the high-density-induced increase of plasma cortisol levels (i.e., a stress marker) in Japanese flounder (Paralichthys olivaceus) [1]. The current study aimed to examine whether the cortisol-reducing effect of DOW was observed in other marine organisms as well by comparing the plasma cortisol levels of nibbler fish Girella punctata reared under high-density conditions between surface seawater (SSW) and DOW. The nibbler fish were caught from Tsukumo Bay of Noto Peninsula (Ishikawa Prefecture, Japan). The DOW was obtained from seawater 320 m below the Noto Bay surface at a facility (Aquas Noto, Ishikawa Prefecture, Japan), whereas SSW was obtained from Tsukumo Bay (Noto Peninsula, Ishikawa Prefecture). The dissolved oxygen was maintained at approximately 7 mg/L in DOW as well as in SSW. Before they were transferred to the high-density condition, nibbler fish were acclimated in SSW at 20°C for 1 week at a mean density of 100 g/62.5 L. To expose them to the high-density stress, each of fish was kept at a density of 10 kg/m3 in a single aquarium (60 × 25 × 30 cm) containing either SSW or DOW (n = 8). Subsequently, the fish were reared with SSW or DOW for 10 days at 20°C ± 1°C under a 12:12-h light-dark cycle. A heparin containing syringe was used to obtain the blood samples from the caudal vessels of the fish anesthetized with a 0.04% 2-phenoxyethanol (FUJIFILM Wako Pure Chemical Corporation). The blood sampling was performed on days 0, 5, and 10 after rearing in the small aquaria. The plasma samples were prepared from the collected blood by centrifuging it at 5200 × g for 5 min and the cortisol concentrations were determined using an enzyme-linked immunosorbent assay (ELISA) kit (Cosmo Bio Co. Ltd., Tokyo, Japan) from those samples. The plasma cortisol concentration of nibbler fish reared in SSW on day 10 was significantly higher than that on day 0, whereas those reared in DOW did not show significant difference on the respective days. The current data contributes to the generalization of the cortisol-reducing effect of DOW on fish, which has been proposed in Japanese flounder [1]. These data could be used for developing and designing experiments to analyze the mechanisms underlying the cortisol-reducing effects by using small fish such as zebrafish, a well-established animal model.

6.
Curr Microbiol ; 80(9): 288, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37458864

RESUMO

In a previous study, we isolated a Vibrio sp. strain MA3 and its virulence factor, a hemolysin encoded by vhe1. This strain is associated with mass mortalities of the pearl oyster Pinctada fucata. In the present study, the vhe1 gene from strain MA3 was cloned and its encoded product was purified and characterized. Our results show that the vhe1 gene encodes a protein of 417 amino acids with an estimated molecular mass of 47.2 kDa and a pI of 5.14. The deduced protein, Vhe1, was found to contain the conserved amino acid sequence (GDSL motif) of the hydrolase/esterase superfamily and five conserved blocks characteristic of SGNH hydrolases. A BLAST homology search indicated that Vhe1 belongs the lecithin-dependent hemolysin/thermolabile hemolysin (LDH/TLH) family. In activity analyses, the optimal temperature for both the hemolytic and phospholipase activities of Vhe1 was 50 °C. Vhe1 hemolytic activity and phospholipase activity were highest at pH 8.5 and pH 8.0, respectively. However, both enzymatic activities sharply decreased at high temperature (> 50 °C) and pH < 7.0. Compared with previously reported hemolysins, Vhe1 appeared to be more thermal- and pH-labile. Both its hemolytic activity and phospholipase activity were significantly inhibited by CuCl2, CdCl2, ZnCl2, and NiCl2, and slightly inhibited by MnCl2 and CoCl2. Vhe1 showed higher phospholipase activity toward medium-chain fatty acids (C8-C12) than toward shorter- and longer-chain fatty acids. These results accumulate knowledge about the LDH/TLH of V. alginolyticus, which detailed characterization has not been reported, and contribute to solving of the mass mortality of pearl oyster.


Assuntos
Pinctada , Vibrio , Animais , Pinctada/genética , Pinctada/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Lecitinas , Vibrio/genética , Vibrio/metabolismo , Fosfolipases/genética , Clonagem Molecular
7.
Front Endocrinol (Lausanne) ; 14: 1173113, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37288290

RESUMO

Melatonin, a neurohormone nocturnally produced by the pineal gland, is known to regulate the circadian rhythm. It has been recently reported that variants of melatonin receptors are associated with an increased risk of hyperglycemia and type 2 diabetes, suggesting that melatonin may be involved in the regulation of glucose homeostasis. Insulin is a key hormone that regulates circulating glucose levels and cellular metabolism after food intake in many tissues, including the brain. Although cells actively uptake glucose even during sleep and without food, little is known regarding the physiological effects of nocturnal melatonin on glucose homeostasis. Therefore, we presume the involvement of melatonin in the diurnal rhythm of glucose metabolism, independent of insulin action after food intake. In the present study, goldfish (Carassius auratus) was used as an animal model, since this species has no insulin-dependent glucose transporter type 4 (GLUT4). We found that in fasted individuals, plasma melatonin levels were significantly higher and insulin levels were significantly lower during the night. Furthermore, glucose uptake in the brain, liver, and muscle tissues also significantly increased at night. After intraperitoneal administration of melatonin, glucose uptake by the brain and liver showed significantly greater increases than in the control group. The administration of melatonin also significantly decreased plasma glucose levels in hyperglycemic goldfish, but failed to alter insulin mRNA expression in Brockmann body and plasma insulin levels. Using an insulin-free medium, we demonstrated that melatonin treatment increased glucose uptake in a dose-dependent manner in primary cell cultures of goldfish brain and liver cells. Moreover, the addition of a melatonin receptor antagonist decreased glucose uptake in hepatocytes, but not in brain cells. Next, treatment with N1-acetyl-5-methoxykynuramine (AMK), a melatonin metabolite in the brain, directly increased glucose uptake in cultured brain cells. Taken together, these findings suggest that melatonin is a possible circadian regulator of glucose homeostasis, whereas insulin acquires its effect on glucose metabolism following food intake.


Assuntos
Diabetes Mellitus Tipo 2 , Melatonina , Animais , Melatonina/metabolismo , Carpa Dourada/fisiologia , Glucose/metabolismo , Encéfalo/metabolismo
8.
Sci Rep ; 13(1): 7591, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37164992

RESUMO

This study is the first to demonstrate that deep ocean water (DOW) has physiological significant effects on squid. After 36 h of rearing squids, those reared with DOW had significantly higher total and free cholesterol levels and lower alanine transaminase activity in hemolymph as compared with those reared with surface sea water (SSW). SSW rearing also resulted in 6.95% weight loss, while DOW rearing caused only 2.5% weight loss, which might be due to liver metabolism suppression. Furthermore, both monovalent (sodium, chloride, and potassium ions) and divalent (calcium, inorganic phosphorus, and magnesium ions) ions in hemolymph were elevated when reared with DOW compared to those when reared with SSW. A study of genes expressed in the brain revealed that five genes were specifically remarked in DOW rearing. Most altered genes were neuropeptides, including those from vasopressin superfamily. These neuropeptides are involved in cholesterol and/or mineral metabolisms and physiological significant effects on squid. This study is the first report the effects of DOW on cholesterol and mineral metabolism of squid and will contribute to squid aquaculture using DOW.


Assuntos
Decapodiformes , Água , Animais , Decapodiformes/genética , Colesterol , Oceanos e Mares , Minerais
9.
Sci Rep ; 13(1): 8700, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248272

RESUMO

Deep ocean water (DOW) exerts positive effects on the growth of marine organisms, suggesting the presence of unknown component(s) that facilitate their aquaculture. We observed that DOW suppressed plasma cortisol (i.e., a stress marker) concentration in Japanese flounder (Paralichthys olivaceus) reared under high-density condition. RNA-sequencing analysis of flounder brains showed that when compared to surface seawater (SSW)-reared fish, DOW-reared fish had lower expression of hypothalamic (i.e., corticotropin-releasing hormone) and pituitary (i.e., proopiomelanocortin, including adrenocorticotropic hormone) hormone-encoding genes. Moreover, DOW-mediated regulation of gene expression was linked to decreased blood cortisol concentration in DOW-reared fish. Our results indicate that DOW activated osteoblasts in fish scales and facilitated the production of Calcitonin, a hypocalcemic hormone that acts as an analgesic. We then provide evidence that the Calcitonin produced is involved in the regulatory network of genes controlling cortisol secretion. In addition, the indole component kynurenine was identified as the component responsible for osteoblast activation in DOW. Furthermore, kynurenine increased plasma Calcitonin concentrations in flounders reared under high-density condition, while it decreased plasma cortisol concentration. Taken together, we propose that kynurenine in DOW exerts a cortisol-reducing effect in flounders by facilitating Calcitonin production by osteoblasts in the scales.


Assuntos
Linguado , Neuropeptídeos , Animais , Linguado/genética , Hidrocortisona/metabolismo , Cinurenina/metabolismo , Calcitonina/genética , Calcitonina/metabolismo , Hipófise/metabolismo , Neuropeptídeos/metabolismo , Água/metabolismo
10.
Sci Rep ; 13(1): 6299, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072482

RESUMO

Beard worms from the family Siboglinidae, are peculiar animals and are known for their symbiotic relationships with sulfur bacteria. Most Siboglinids inhabit the deep-sea floor, thus making difficult to make any observations in situ. One species, Oligobrachia mashikoi, occurs in the shallow depths (24.5 m) of the Sea of Japan. Taking advantage of its shallow-water habitat, the first ecological survey of O. mashikoi was performed over a course of 7 years, which revealed that its tentacle-expanding behavior was dependent on the temperature and illuminance of the sea water. Furthermore, there were significantly more O. mashikoi with expanding tentacles during the nighttime than during the daytime, and the prevention of light eliminated these differences in the number of expending tentacles. These results confirmed that the tentacle-expanding behavior is controlled by environmental light signals. Consistent with this, we identified a gene encoding a photoreceptor molecule, neuropsin, in O. mashikoi, and the expression thereof is dependent on the time of day. We assume that the described behavioral response of O. mashikoi to light signals represent an adaptation to a shallow-water environment within the predominantly deep-sea taxon.


Assuntos
Poliquetos , Água , Animais , Água do Mar , Adaptação Fisiológica , Ecossistema , Filogenia
11.
Mar Biotechnol (NY) ; 25(5): 666-676, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36648572

RESUMO

Tetrodotoxin (TTX), or pufferfish toxin, has been frequently detected in edible bivalves around the world during the last decade and is problematic in food hygiene and safety. It was reported recently that highly concentrated TTX was detected in the midgut gland of the akazara scallop Chlamys (Azumapecten) farreri subsp. akazara collected in coastal areas of the northern Japanese archipelago. The toxification of the bivalve was likely to involve the larvae of the flatworm, Planocera multitentaculata. However, the overall status of bivalve TTX toxification has not been elucidated. In this study, 14 species/subspecies of bivalves from various Japanese waters were subjected to LC-MS/MS analysis to reveal TTX toxification state, demonstrating that the Pectinidae, including C. farreri akazara, Chlamys farreri nipponensis, Chlamys (Mimachlamys) nobilis, and Mizuhopecten yessoensis, accumulated TTX in their midgut gland. Many individuals of C. farreri akazara and C. farreri nipponensis were found with high concentrations of TTX, while C. nobilis and M. yessoensis exhibited low concentrations. The extent of TTX accumulation in C. farreri akazara and C. farreri nipponensis varied widely by region and season. Curiously, no other bivalve species investigated in this study showed evidence of TTX. These results suggest that monitoring for TTX, like other shellfish toxins, is necessary to ensure that pectinid bivalves are a safe food resource.


Assuntos
Pectinidae , Platelmintos , Tetrodotoxina , Animais , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Tetrodotoxina/análise
12.
Sci Rep ; 13(1): 1611, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36709241

RESUMO

It was reported that nicotinic acetylcholine receptor (nAChR)-mediated signaling pathways affect the proliferation and differentiation of pluripotent stem cells. However, detail expression profiles of nAChR genes were unrevealed in these cells. In this study, we comprehensively investigated the gene expression of α subunit of nAChRs (Chrna) during differentiation and induction of pluripotent stem cells. Mouse embryonic stem (ES) cells expressed multiple Chrna genes (Chrna3-5, 7 and 9) in undifferentiated status. Among them, Chrna9 was markedly down-regulated upon the differentiation into mesenchymal cell lineage. In mouse tissues and cells, Chrna9 was mainly expressed in testes, ES cells and embryonal F9 teratocarcinoma stem cells. Expression of Chrna9 gene was acutely reduced during differentiation of ES and F9 cells within 24 h. In contrast, Chrna9 expression was increased in induced pluripotent stem cells established from mouse embryonic fibroblast. It was shown by the reporter assays that T element-like sequence in the promoter region of Chrna9 gene is important for its activities in ES cells. Chrna9 was markedly reduced by siRNA-mediated knockdown of Tbx3, a pluripotency-related transcription factor of the T-box gene family. These results indicate that Chrna9 is a nAChR gene that are transcriptionally regulated by Tbx3 in undifferentiated pluripotent cells.


Assuntos
Células-Tronco Pluripotentes , Receptores Nicotínicos , Proteínas com Domínio T , Animais , Camundongos , Diferenciação Celular , Células-Tronco Embrionárias , Fibroblastos/metabolismo , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismo , Receptores Nicotínicos/metabolismo
13.
J Pineal Res ; 74(1): e12834, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36203395

RESUMO

Exposure to the space environment induces a number of pathophysiological outcomes in astronauts, including bone demineralization, sleep disorders, circadian clock dysregulation, cardiovascular and metabolic dysfunction, and reduced immune system function. A recent report describing experiments aboard the Space Shuttle mission, STS-132, showed that the level of melatonin, a hormone that provides the biochemical signal of darkness, was decreased during microgravity in an in vitro culture model. Additionally, abnormal lighting conditions in outer space, such as low light intensity in orbital spacecraft and the altered 24-h light-dark cycles, may result in the dysregulation of melatonin rhythms and the misalignment of the circadian clock from sleep and work schedules in astronauts. Studies on Earth have demonstrated that melatonin regulates various physiological functions including bone metabolism. These data suggest that the abnormal regulation of melatonin in outer space may contribute to pathophysiological conditions of astronauts. In addition, experiments with high-linear energy transfer radiation, a ground-based model of space radiation, showed that melatonin may serve as a protectant against space radiation. Gene expression profiling using an in vitro culture model exposed to space flight during the STS-132 mission, showed that space radiation alters the expression of DNA repair and oxidative stress response genes, indicating that melatonin counteracts the expression of these genes responsive to space radiation to promote cell survival. These findings implicate the use of exogenous melatonin and the regulation of endogenous melatonin as countermeasures for the physiological consequences of space flight.


Assuntos
Transtornos Cronobiológicos , Relógios Circadianos , Melatonina , Lesões por Radiação , Voo Espacial , Humanos , Melatonina/farmacologia , Melatonina/fisiologia , Ritmo Circadiano/fisiologia
14.
Procedia Comput Sci ; 207: 343-350, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275390

RESUMO

Many infection preventing measures have been taken in COVID-19 situation. In particular, the approach called Three Cs avoidance is drawing attention. Three Cs means closed spaces, crowded places, and close-contact settings. This approach is taken in many business scenes regardless of individual situation. Such Three Cs are effective, but it is difficult for humans to always be aware of them. Various detection systems have been proposed to help understanding Three Cs situation. Most of them use cameras, CO2 sensors and so on. However, such system is costly due to introduce new equipment. Therefore, we propose a method for detecting Three Cs using only the existing widely used Wi-Fi equipment. Our method introduces unique detection parameters and performs statistical evaluation. As a result of constructing the system and evaluating it, we confirmed that it was possible to detect Three Cs with an accuracy of 86% or more.

15.
Zoolog Sci ; 39(4)2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35960027

RESUMO

It is known that the bone matrix plays an important role in the response to physical stresses such as hypergravity and microgravity. In order to accurately analyze the response of bone to hypergravity and microgravity, a culture system under the conditions of coexistence of osteoclasts, osteoblasts, and bone matrix was earnestly desired. The teleost scale is a unique calcified organ in which osteoclasts, osteoblasts, and the two layers of bone matrix, i.e., a bony layer and a fibrillary layer, coexist. Therefore, we have developed in vitro organ culture systems of osteoclasts and osteoblasts with the intact bone matrix using goldfish scales. Using the scale culture system, we examined the effects of hypergravity with a centrifuge and simulated ground microgravity (g-µG) with a three-dimensional clinostat on osteoclasts and osteoblasts. Under 3-gravity (3G) loading for 1 day, osteoclastic marker mRNA expression levels decreased, while the mRNA expression of the osteoblastic marker increased. Upon 1 day of exposure, the simulated g-µG induced remarkable enhancement of osteoclastic marker mRNA expression, whereas the osteoblastic marker mRNA expression decreased. In response to these gravitational stimuli, osteoclasts underwent major morphological changes. By simulated g-µG treatments, morphological osteoclastic activation was induced, while osteoclastic deactivation was observed in the 3G-treated scales. In space experiments, the results that had been obtained with simulated g-µG were reproduced. RNA-sequencing analysis showed that osteoclastic activation was induced by the down-regulation of Wnt signaling under flight-microgravity. Thus, goldfish scales can be utilized as a bone model to analyze the responses of osteoclasts and osteoblasts to gravity.


Assuntos
Hipergravidade , Ausência de Peso , Animais , Carpa Dourada/genética , Carpa Dourada/metabolismo , Osteoblastos , Osteoclastos/metabolismo , RNA Mensageiro/genética
16.
Mar Pollut Bull ; 180: 113749, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35596998

RESUMO

Concentrations of 13 phase-partitioned polycyclic aromatic hydrocarbons (PAHs) in seawater were monitored monthly off Oki Island, Japan, during 2015-2019 to elucidate seasonal variations, main source, and transport pathways of PAHs in the southwestern Sea of Japan. Total PAH (dissolved plus particulate) concentrations in surface seawater at 36°09.0'N, 133°17.3'E (site OK) were in the range 0.49-9.36 ng L-1 (mean 2.77, SD 2.05 ng L-1) with higher levels in summer-autumn, an order of magnitude lower than those in the East China Sea during 2005 and 2009-2011 and about one-third of those recorded in the Sea of Japan in 2008 and 2010. The main sources of dissolved and particulate PAHs were combustion products. Increasing dissolved PAH levels during July-October indicate that the area around southern Oki Island is impacted by PAH-rich summer continental-shelf water transported by the Tsushima Warm Current flowing from the East China Sea.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , China , Carvão Mineral , Monitoramento Ambiental , Japão , Hidrocarbonetos Policíclicos Aromáticos/análise , Estações do Ano , Poluentes Químicos da Água/análise
17.
Ecotoxicol Environ Saf ; 234: 113401, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35298967

RESUMO

To study the toxicity of 3-hydroxybenzo[c]phenanthrene (3-OHBcP), a metabolite of benzo[c]phenanthrene (BcP), first we compared it with its parent compound, BcP, using an in ovo-nanoinjection method in Japanese medaka. Second, we examined the influence of 3-OHBcP on bone metabolism using goldfish. Third, the detailed mechanism of 3-OHBcP on bone metabolism was investigated using zebrafish and goldfish. The LC50s of BcP and 3-OHBcP in Japanese medaka were 5.7 nM and 0.003 nM, respectively, indicating that the metabolite was more than 1900 times as toxic as the parent compound. In addition, nanoinjected 3-OHBcP (0.001 nM) induced skeletal abnormalities. Therefore, fish scales with both osteoblasts and osteoclasts on the calcified bone matrix were examined to investigate the mechanisms of 3-OHBcP toxicity on bone metabolism. We found that scale regeneration in the BcP-injected goldfish was significantly inhibited as compared with that in control goldfish. Furthermore, 3-OHBcP was detected in the bile of BcP-injected goldfish, indicating that 3-OHBcP metabolized from BcP inhibited scale regeneration. Subsequently, the toxicity of BcP and 3-OHBcP to osteoblasts was examined using an in vitro assay with regenerating scales. The osteoblastic activity in the 3-OHBcP (10-10 to 10-7 M)-treated scales was significantly suppressed, while BcP (10-11 to 10-7 M)-treated scales did not affect osteoblastic activity. Osteoclastic activity was unchanged by either BcP or 3-OHBcP treatment at each concentration (10-11 to 10-7 M). The detailed toxicity of 3-OHBcP (10-9 M) in osteoblasts was then examined using gene expression analysis on a global scale with fish scales. Eight genes, including APAF1, CHEK2, and FOS, which are associated with apoptosis, were identified from the upregulated genes. This indicated that 3-OHBcP treatment induced apoptosis in fish scales. In situ detection of cell death by TUNEL methods was supported by gene expression analysis. This study is the first to demonstrate that 3-OHBcP, a metabolite of BcP, has greater toxicity than the parent compound, BcP.

18.
Biochemistry (Mosc) ; 86(10): 1192-1200, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34903151

RESUMO

Omeprazole suppresses excessive secretion of gastric acid via irreversible inhibition of H+/K+-ATPase in the gastric parietal cells. Recent meta-analysis of data revealed an association between the use of proton pump inhibitors (PPIs) and increased risk of bone fractures, but the underlying molecular mechanism of PPI action remains unclear. In this study, we demonstrated that omeprazole directly influences bone metabolism using a unique in vitro bioassay system with teleost scales, as well as the in vivo model. The in vitro study showed that omeprazole significantly increased the activities of alkaline phosphatase and tartrate-resistant acid phosphatase after 6 h of incubation with this PPI. Expression of mRNAs for several osteoclastic markers was upregulated after 3-h incubation of fish scales with 10-7 M omeprazole. The in vivo experiments revealed that the plasma calcium levels significantly increased in the omeprazole-treated group. The results of in vitro and in vivo studies suggest that omeprazole affects bone cells by increasing bone resorption by upregulating expression of osteoclastic genes and promoting calcium release to the circulation. The suggested in vitro bioassay in fish scales is a practical model that can be used to study the effects of drugs on bone metabolism.


Assuntos
Escamas de Animais/efeitos dos fármacos , Carpa Dourada/metabolismo , Omeprazol/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Escamas de Animais/citologia , Escamas de Animais/metabolismo , Animais , Antiulcerosos/farmacologia , Cálcio/metabolismo , Linfocinas/metabolismo , Modelos Animais , Osteoblastos/metabolismo , Osteoclastos/metabolismo
19.
Animals (Basel) ; 11(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34679897

RESUMO

17ß-hydroxysteroid dehydrogenase type 3 (HSD17B3) converts androstenedione (A4) into testosterone (T), which regulates sex steroid production. Because various mutations of the HSD17B3 gene cause disorder of sex differentiation (DSD) in multiple mammalian species, it is very important to reveal the molecular characteristics of this gene in various species. Here, we revealed the open reading frame of the ovine HSD17B3 gene. Enzymatic activities of ovine HSD17B3 and HSD17B1 for converting A4 to T were detected using ovine androgen receptor-mediated transactivation in reporter assays. Although HSD17B3 also converted estrone to estradiol, this activity was much weaker than those of HSD17B1. Although ovine HSD17B3 has an amino acid sequence that is conserved compared with other mammalian species, it possesses two amino acid substitutions that are consistent with the reported variants of human HSD17B3. Substitutions of these amino acids in ovine HSD17B3 for those in human did not affect the enzymatic activities. However, enzymatic activities declined upon missense mutations of the HSD17B3 gene associated with 46,XY DSD, affecting amino acids that are conserved between these two species. The present study provides basic information and tools to investigate the molecular mechanisms behind DSD not only in ovine, but also in various mammalian species.

20.
Neuropsychiatr Dis Treat ; 17: 2291-2308, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34285489

RESUMO

PURPOSE: Amyloid-ß (Aß) is a brain protein that causes Alzheimer's disease. We have revealed that extracorporeal blood Aß-removal systems evoked a large Aß influx into the blood. This study investigated the system that is more effective in evoking Aß influx. METHODS: Aß removal activities were compared between hexadecyl-alkylated cellulose beads (HexDC) and fragments of polysulfone hollow fibers (PSf-HFs) in mini-columns to eliminate the filtration effect. Then, adsorptive filtration systems were adapted for PSf hemodialyzers to enhance Aß adsorption on micropores in the wall of hollow fibers. Plasma Aß concentrations of patients with renal failure were analyzed during treatment with PSf hemodialyzers alone for 8 h or tandemly connected HexDC and PSf hemodialyzers for 4 h. RESULTS: In the in vitro study, Aß removal efficiency for HexDC was approximately 100% during the 60 min treatment, whereas the removal efficiency for PSf-HF fragments gradually decreased. However, PSf hemodialyzer in adsorptive filtration systems removed Aßs comparably or more than HexDC. Aß influx into the blood increases time-dependently. Concomitant use of HexDC and PSf hemodialyzer evoked a larger Aß1-40 influx than that of PSf hemodialyzer alone. However, Aß1-42 influx by PSf hemodialyzer alone was similar to or a little larger than influx by the combined system. Both systems evoked almost doubled Aß influx than estimated Aßs existing in the normal brain during the 4 h treatment. CONCLUSION: PSf hemodialyzer alone for a longer period and concomitant use of HexDC and PSf hemodialyzer for a shorter time effectively evoked a larger Aß influx. To evoke Aß1-42 influx, PSf hemodialyzer alone was effective enough. These findings of devices and treatment time may lead to optimal clinical settings for therapy and prevention of Alzheimer's disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA