Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 20(4): e1011228, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38598567

RESUMO

The laboratory mouse has served as the premier animal model system for both basic and preclinical investigations for over a century. However, laboratory mice capture only a subset of the genetic variation found in wild mouse populations, ultimately limiting the potential of classical inbred strains to uncover phenotype-associated variants and pathways. Wild mouse populations are reservoirs of genetic diversity that could facilitate the discovery of new functional and disease-associated alleles, but the scarcity of commercially available, well-characterized wild mouse strains limits their broader adoption in biomedical research. To overcome this barrier, we have recently developed, sequenced, and phenotyped a set of 11 inbred strains derived from wild-caught Mus musculus domesticus. Each of these "Nachman strains" immortalizes a unique wild haplotype sampled from one of five environmentally distinct locations across North and South America. Whole genome sequence analysis reveals that each strain carries between 4.73-6.54 million single nucleotide differences relative to the GRCm39 mouse reference, with 42.5% of variants in the Nachman strain genomes absent from current classical inbred mouse strain panels. We phenotyped the Nachman strains on a customized pipeline to assess the scope of disease-relevant neurobehavioral, biochemical, physiological, metabolic, and morphological trait variation. The Nachman strains exhibit significant inter-strain variation in >90% of 1119 surveyed traits and expand the range of phenotypic diversity captured in classical inbred strain panels. These novel wild-derived inbred mouse strain resources are set to empower new discoveries in both basic and preclinical research.


Assuntos
Variação Genética , Camundongos Endogâmicos , Fenótipo , Animais , Camundongos , Camundongos Endogâmicos/genética , Genômica/métodos , Animais Selvagens/genética , Genoma/genética , Polimorfismo de Nucleotídeo Único , Haplótipos , Sequenciamento Completo do Genoma
2.
mBio ; 15(2): e0283623, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38132571

RESUMO

The gut bacteria of the family Christensenellaceae are consistently associated with metabolic health, but their role in promoting host health is not fully understood. Here, we explored the effect of Christensenella minuta amendment on voluntary physical activity and the gut microbiome. We inoculated male and female germ-free mice with an obese human donor microbiota together with live or heat-killed C. minuta for 28 days and measured physical activity in respirometry cages. Compared to heat-killed, the live-C. minuta treatment resulted in reduced feed efficiency and higher levels of physical activity, with significantly greater distance traveled for males and higher levels of small movements and resting metabolic rate in females. Sex-specific effects of C. minuta treatment may be in part attributable to different housing conditions for males and females. Amendment with live C. minuta boosted gut microbial biomass in both sexes, immobilizing dietary carbon in the microbiome, and mice with high levels of C. minuta lose more energy in stool. Live C. minuta also reduced within and between-host gut microbial diversity. Overall, our results showed that C. minuta acts as a keystone species: despite low relative abundance, it has a large impact on its ecosystem, from the microbiome to host energy homeostasis.IMPORTANCEThe composition of the human gut microbiome is associated with human health. Within the human gut microbiome, the relative abundance of the bacterial family Christensenellaceae has been shown to correlate with metabolic health and a lean body type. The mechanisms underpinning this effect remain unclear. Here, we show that live C. minuta influences host physical activity and metabolic energy expenditure, accompanied by changes in murine metabolism and the gut microbial community in a sex-dependent manner in comparison to heat-killed C. minuta. Importantly, live C. minuta boosts the biomass of the microbiome in the gut, and a higher level of C. minuta is associated with greater loss of energy in stool. These observations indicate that modulation of activity levels and changes to the microbiome are ways in which the Christensenellaceae can influence host energy homeostasis and health.


Assuntos
Clostridiales , Microbioma Gastrointestinal , Microbiota , Humanos , Masculino , Feminino , Animais , Camundongos , Biomassa , Fezes/microbiologia , Bactérias/metabolismo
3.
bioRxiv ; 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37790321

RESUMO

The laboratory mouse has served as the premier animal model system for both basic and preclinical investigations for a century. However, laboratory mice capture a narrow subset of the genetic variation found in wild mouse populations. This consideration inherently restricts the scope of potential discovery in laboratory models and narrows the pool of potentially identified phenotype-associated variants and pathways. Wild mouse populations are reservoirs of predicted functional and disease-associated alleles, but the sparsity of commercially available, well-characterized wild mouse strains limits their broader adoption in biomedical research. To overcome this barrier, we have recently imported, sequenced, and phenotyped a set of 11 wild-derived inbred strains developed from wild-caught Mus musculus domesticus. Each of these "Nachman strains" immortalizes a unique wild haplotype sampled from five environmentally diverse locations across North and South America: Saratoga Springs, New York, USA; Gainesville, Florida, USA; Manaus, Brazil; Tucson, Arizona, USA; and Edmonton, Alberta, Canada. Whole genome sequence analysis reveals that each strain carries between 4.73-6.54 million single nucleotide differences relative to the mouse reference assembly, with 42.5% of variants in the Nachman strain genomes absent from classical inbred mouse strains. We phenotyped the Nachman strains on a customized pipeline to assess the scope of disease-relevant neurobehavioral, biochemical, physiological, metabolic, and morphological trait variation. The Nachman strains exhibit significant inter-strain variation in >90% of 1119 surveyed traits and expand the range of phenotypic diversity captured in classical inbred strain panels alone. Taken together, our work introduces a novel wild-derived inbred mouse strain resource that will enable new discoveries in basic and preclinical research. These strains are currently available through The Jackson Laboratory Repository under laboratory code NachJ.

4.
Science ; 377(6612): 1328-1332, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36108023

RESUMO

The gut microbiomes of human populations worldwide have many core microbial species in common. However, within a species, some strains can show remarkable population specificity. The question is whether such specificity arises from a shared evolutionary history (codiversification) between humans and their microbes. To test for codiversification of host and microbiota, we analyzed paired gut metagenomes and human genomes for 1225 individuals in Europe, Asia, and Africa, including mothers and their children. Between and within countries, a parallel evolutionary history was evident for humans and their gut microbes. Moreover, species displaying the strongest codiversification independently evolved traits characteristic of host dependency, including reduced genomes and oxygen and temperature sensitivity. These findings all point to the importance of understanding the potential role of population-specific microbial strains in microbiome-mediated disease phenotypes.


Assuntos
Bactérias , Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos , Bactérias/classificação , Bactérias/genética , Criança , Microbioma Gastrointestinal/genética , Humanos , Metagenoma , Oxigênio/metabolismo
5.
Sci Rep ; 12(1): 12829, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896794

RESUMO

This study was performed to elucidate whether eicosapentaenoic acid (EPA) suppresses spasm-prone blood vessel contractions induced by a thromboxane mimetic (U46619) and prostaglandin F2α (PGF2α) and determine whether the primary target of EPA is the prostanoid TP receptor. Accordingly, we assessed: (1) the tension changes in porcine basilar and coronary arteries, and (2) changes in the Fura-2 (an intracellular Ca2+ indicator) fluorescence intensity ratio at 510 nm elicited by 340/380 nm excitation (F340/380) in 293T cells expressing the human TP receptor (TP-293T cells) and those expressing the human prostanoid FP receptor (FP-293T cells). EPA inhibited both porcine basilar and coronary artery contractions induced by U46619 and PGF2α in a concentration-dependent manner, but it did not affect the contractions induced by 80 mM KCl. EPA also inhibited the increase in F340/380 induced by U46619 and PGF2α in TP-293T cells. In contrast, EPA showed only a marginal effect on the increase in F340/380 induced by PGF2α in FP-293T cells. These findings indicate that EPA strongly suppresses the porcine basilar and coronary artery contractions mediated by TP receptor and that inhibition of TP receptors partly underlies the EPA-induced inhibitory effects on these arterial contractions.


Assuntos
Ácido Eicosapentaenoico , Vasoconstritores , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Animais , Artérias Cerebrais , Dinoprosta/farmacologia , Ácido Eicosapentaenoico/farmacologia , Humanos , Receptores de Prostaglandina , Receptores de Tromboxano A2 e Prostaglandina H2/fisiologia , Suínos , Vasoconstritores/farmacologia
7.
Genetics ; 220(2)2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34897431

RESUMO

Understanding the genetic basis of environmental adaptation in natural populations is a central goal in evolutionary biology. The conditions at high elevation, particularly the low oxygen available in the ambient air, impose a significant and chronic environmental challenge to metabolically active animals with lowland ancestry. To understand the process of adaptation to these novel conditions and to assess the repeatability of evolution over short timescales, we examined the signature of selection from complete exome sequences of house mice (Mus musculus domesticus) sampled across two elevational transects in the Andes of South America. Using phylogenetic analysis, we show that house mice colonized high elevations independently in Ecuador and Bolivia. Overall, we found distinct responses to selection in each transect and largely nonoverlapping sets of candidate genes, consistent with the complex nature of traits that underlie adaptation to low oxygen availability (hypoxia) in other species. Nonetheless, we also identified a small subset of the genome that appears to be under parallel selection at the gene and SNP levels. In particular, three genes (Col22a1, Fgf14, and srGAP1) bore strong signatures of selection in both transects. Finally, we observed several patterns that were common to both transects, including an excess of derived alleles at high elevation, and a number of hypoxia-associated genes exhibiting a threshold effect, with a large allele frequency change only at the highest elevations. This threshold effect suggests that selection pressures may increase disproportionately at high elevations in mammals, consistent with observations of some high-elevation diseases in humans.


Assuntos
Adaptação Fisiológica , Genômica , Aclimatação , Adaptação Fisiológica/genética , Alelos , Animais , Mamíferos/genética , Camundongos , Filogenia
8.
Commun Chem ; 5(1): 66, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-36697589

RESUMO

Electrifying synthesis is now a common slogan among synthetic chemists. In addition to the conventional two- or three-electrode systems that use batch-type cells, recent progress in organic electrochemical processes has been significant, including microflow electrochemical reactors, Li-ion battery-like technology, and bipolar electrochemistry. Herein we demonstrate an advanced electrosynthesis method without the application of electric power based on the concept of streaming potential-driven bipolar electrochemistry. As a proof-of-concept study, the electrochemical oxidative polymerization of aromatic monomers successfully yielded the corresponding polymer films on an electrode surface, which acted as an anode under the flow of electrolyte in a microchannel without an electric power supply.

9.
Sci Rep ; 11(1): 24166, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34934055

RESUMO

Trrap (transformation/transcription domain-associated protein) is a component shared by several histone acetyltransferase (HAT) complexes and participates in transcriptional regulation and DNA repair; however, the developmental functions of Trrap in vertebrates are not fully understood. Recently, it has been reported that human patients with genetic mutations in the TRRAP gene show various symptoms, including facial dysmorphisms, microcephaly and global developmental delay. To investigate the physiological functions of Trrap, we established trrap gene-knockout zebrafish and examined loss-of-function phenotypes in the mutants. The trrap zebrafish mutants exhibited smaller eyes and heads than the wild-type zebrafish. The size of the ventral pharyngeal arches was reduced and the mineralization of teeth was impaired in the trrap mutants. Whole-mount in situ hybridization analysis revealed that dlx3 expression was narrowly restricted in the developing ventral pharyngeal arches, while dlx2b expression was diminished in the trrap mutants. These results suggest that trrap zebrafish mutants are useful model organisms for a human disorder associated with genetic mutations in the human TRRAP gene.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Nucleares , Proteínas de Peixe-Zebra , Peixe-Zebra , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Regulação da Expressão Gênica , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
10.
Eur J Pharmacol ; 908: 174371, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34329614

RESUMO

Docosahexaenoic acid (DHA, an n-3 polyunsaturated fatty acid) inhibits U46619 (a TP receptor agonist)- and prostaglandin F2α-induced contractions in rat aorta and mesenteric arteries. However, whether these effects could be replicated in vasospasm-prone vessels, such as coronary and cerebral arteries, remains unknown. Here, we evaluated the changes in pig coronary and basilar artery tensions and intracellular Ca2+ concentrations in human prostanoid TP or FP receptor-expressing cells. We aimed to clarify whether DHA inhibits U46619- and prostaglandin F2α-induced contractions in spasm-prone blood vessels and determine if the TP receptor is the primary target for DHA. In both pig coronary and basilar arteries, DHA suppressed U46619- and prostaglandin F2α-induced sustained contractions in a concentration-dependent manner, but did not affect contractions induced by 80 mM KCl. SQ 29,548 (a TP receptor antagonist) suppressed U46619- and prostaglandin F2α-induced contractions by approximately 100% and 60%, respectively. DHA suppressed both U46619- and prostaglandin F2α-induced increases in intracellular Ca2+ concentrations in human TP receptor-expressing cells. However, DHA did not affect prostaglandin F2α-induced increases in intracellular Ca2+ concentrations in human FP receptor-expressing cells. These findings suggest that DHA potently inhibits TP receptor-mediated contractions in pig coronary and basilar arteries, and the primary mechanism underlying its inhibitory effects on arterial contractions involves inhibiting TP receptors.


Assuntos
Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico , Animais , Artéria Basilar , Ácidos Docosa-Hexaenoicos , Humanos , Ratos , Receptores de Tromboxano A2 e Prostaglandina H2
11.
PLoS Genet ; 17(4): e1009495, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33914747

RESUMO

Parallel changes in genotype and phenotype in response to similar selection pressures in different populations provide compelling evidence of adaptation. House mice (Mus musculus domesticus) have recently colonized North America and are found in a wide range of environments. Here we measure phenotypic and genotypic differentiation among house mice from five populations sampled across 21° of latitude in western North America, and we compare our results to a parallel latitudinal cline in eastern North America. First, we show that mice are genetically differentiated between transects, indicating that they have independently colonized similar environments in eastern and western North America. Next, we find genetically-based differences in body weight and nest building behavior between mice from the ends of the western transect which mirror differences seen in the eastern transect, demonstrating parallel phenotypic change. We then conduct genome-wide scans for selection and a genome-wide association study to identify targets of selection and candidate genes for body weight. We find some genomic signatures that are unique to each transect, indicating population-specific responses to selection. However, there is significant overlap between genes under selection in eastern and western house mouse transects, providing evidence of parallel genetic evolution in response to similar selection pressures across North America.


Assuntos
Aclimatação/genética , Adaptação Fisiológica/genética , Evolução Molecular , Seleção Genética/genética , Animais , Peso Corporal/genética , Variação Genética/genética , Estudo de Associação Genômica Ampla/métodos , Genômica , Camundongos , América do Norte , Fenótipo
12.
Science ; 370(6521)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33273073

RESUMO

As human populations spread across the world, they adapted genetically to local conditions. So too did the resident microorganism communities that everyone carries with them. However, the collective influence of the diverse and dynamic community of resident microbes on host evolution is poorly understood. The taxonomic composition of the microbiota varies among individuals and displays a range of sometimes redundant functions that modify the physicochemical environment of the host and may alter selection pressures. Here we review known human traits and genes for which the microbiota may have contributed or responded to changes in host diet, climate, or pathogen exposure. Integrating host-microbiota interactions in human adaptation could offer new approaches to improve our understanding of human health and evolution.


Assuntos
Adaptação Fisiológica/genética , Interação Gene-Ambiente , Microbiota/fisiologia , Dieta , Humanos
13.
Mol Ecol ; 29(12): 2300-2311, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32419280

RESUMO

The extent to which the gut microbiota may play a role in latitudinal clines of body mass variation (i.e., Bergmann's rule) remains largely unexplored. Here, we collected wild house mice from three latitudinal transects across North and South America and investigated the relationship between variation in the gut microbiota and host body mass by combining field observations and common garden experiments. First, we found that mice in the Americas follow Bergmann's rule, with increasing body mass at higher latitudes. Second, we found that overall differences in the gut microbiota were associated with variation in body mass controlling for the effects of latitude. Then, we identified specific microbial measurements that show repeated associations with body mass in both wild-caught and laboratory-reared mice. Finally, we found that mice from colder environments tend to produce greater amounts of bacteria-driven energy sources (i.e., short-chain fatty acids) without an increase in food consumption. Our findings provide motivation for future faecal transplant experiments directly testing the intriguing possibility that the gut microbiota may contribute to Bergmann's rule, a fundamental pattern in ecology.


Assuntos
Microbioma Gastrointestinal , Camundongos/microbiologia , Animais , Tamanho Corporal , Ecologia , América do Norte , América do Sul
14.
Mol Ecol ; 28(13): 3197-3207, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31141224

RESUMO

Identifying a common set of genes that mediate host-microbial interactions across populations and species of mammals has broad relevance for human health and animal biology. However, the genetic basis of the gut microbial composition in natural populations remains largely unknown outside of humans. Here, we used wild house mouse populations as a model system to ask three major questions: (a) Does host genetic relatedness explain interindividual variation in gut microbial composition? (b) Do population differences in the microbiota persist in a common environment? (c) What are the host genes associated with microbial richness and the relative abundance of bacterial genera? We found that host genetic distance is a strong predictor of the gut microbial composition as characterized by 16S amplicon sequencing. Using a common garden approach, we then identified differences in microbial composition between populations that persisted in a shared laboratory environment. Finally, we used exome sequencing to associate host genetic variants with microbial diversity and relative abundance of microbial taxa in wild mice. We identified 20 genes that were associated with microbial diversity or abundance including a macrophage-derived cytokine (IL12a) that contained three nonsynonymous mutations. Surprisingly, we found a significant overrepresentation of candidate genes that were previously associated with microbial measurements in humans. The homologous genes that overlapped between wild mice and humans included genes that have been associated with traits related to host immunity and obesity in humans. Gene-bacteria associations identified in both humans and wild mice suggest some commonality to the host genetic determinants of gut microbial composition across mammals.


Assuntos
Bactérias/classificação , Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos/genética , Camundongos/microbiologia , Animais , Animais Selvagens/microbiologia , Biodiversidade , Exoma , Genética Populacional , Estudo de Associação Genômica Ampla , Humanos , Modelos Lineares , Modelos Genéticos , Análise Multivariada , América do Norte , Polimorfismo de Nucleotídeo Único , RNA Ribossômico 16S/genética
15.
Mol Ecol ; 28(9): 2378-2390, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30346069

RESUMO

The maintenance of oxygen homeostasis in the gut is critical for the maintenance of a healthy gut microbiota. However, few studies have explored how the concentration of atmospheric oxygen affects the gut microbiota in natural populations. High-altitude environments provide an opportunity to study the potential effects of atmospheric oxygen on the composition and function of the gut microbiota. Here, we characterized the caecal microbial communities of wild house mice (Mus musculus domesticus) in two independent altitudinal transects, one in Ecuador and one in Bolivia, from sea level to nearly 4,000 m. First, we found that differences in altitude were associated with differences in the gut microbial community after controlling for the effects of body mass, diet, reproductive status and population of origin. Second, obligate anaerobes tended to show a positive correlation with altitude, while all other microbes tended to show a negative correlation with altitude. These patterns were seen independently in both transects, consistent with the expected effects of atmospheric oxygen on gut microbes. Prevotella was the most-enriched genus at high elevations in both transects, consistent with observations in high-altitude populations of pikas, ruminants and humans, and also consistent with observations of laboratory mice exposed to hypoxic conditions. Lastly, the renin-angiotensin system, a recently proposed microbiota-mediated pathway of blood pressure regulation, was the top predicted metagenomic pathway enriched in high altitudes in both transects. These results suggest that high-altitude environments affect the composition and function of the gut microbiota in wild mammals.


Assuntos
Microbioma Gastrointestinal/fisiologia , Camundongos/microbiologia , Altitude , Animais , Pressão Sanguínea , Índice de Massa Corporal , Bolívia , Equador , Microbioma Gastrointestinal/genética , Metagenoma , Oxigênio , Prevotella , RNA Ribossômico 16S
16.
Science ; 362(6413): 453-457, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30361372

RESUMO

Mammals house a diversity of bacteria that affect health in various ways, but the routes by which bacterial lineages are transmitted between hosts remain poorly understood. We experimentally determined microbiota transmission modes by deriving 17 inbred mouse lines from two wild populations and monitoring their gut microbiotas for up to 11 host generations. Individual- and population-level microbiota compositions were maintained within mouse lines throughout the experiment, indicating predominantly vertical inheritance of the microbiota. However, certain bacterial taxa tended to be exchanged horizontally between mouse lines. Consistent with evolutionary theory, the degree of horizontal transmission predicted bacterial genera with pathogenic representatives responsible for human infections and hospitalizations.


Assuntos
Fenômenos Fisiológicos Bacterianos , Microbioma Gastrointestinal/fisiologia , Animais , Bactérias/classificação , Bactérias/patogenicidade , Camundongos , Camundongos Endogâmicos
17.
PLoS Genet ; 14(9): e1007672, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30248095

RESUMO

House mice (Mus musculus) arrived in the Americas only recently in association with European colonization (~400-600 generations), but have spread rapidly and show evidence of local adaptation. Here, we take advantage of this genetic model system to investigate the genomic basis of environmental adaptation in house mice. First, we documented clinal patterns of phenotypic variation in 50 wild-caught mice from a latitudinal transect in Eastern North America. Next, we found that progeny of mice from different latitudes, raised in a common laboratory environment, displayed differences in a number of complex traits related to fitness. Consistent with Bergmann's rule, mice from higher latitudes were larger and fatter than mice from lower latitudes. They also built bigger nests and differed in aspects of blood chemistry related to metabolism. Then, combining exomic, genomic, and transcriptomic data, we identified specific candidate genes underlying adaptive variation. In particular, we defined a short list of genes with cis-eQTL that were identified as candidates in exomic and genomic analyses, all of which have known ties to phenotypes that vary among the studied populations. Thus, wild mice and the newly developed strains represent a valuable resource for future study of the links between genetic variation, phenotypic variation, and climate.


Assuntos
Adaptação Fisiológica/genética , Variação Genética , Camundongos Endogâmicos/genética , Camundongos/fisiologia , Locos de Características Quantitativas/genética , Animais , Clima , Feminino , Masculino , Modelos Genéticos , Fenótipo
18.
Genome ; 61(3): 195-200, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29401405

RESUMO

It has been thought that the Japanese house mouse carries the Aw allele at the agouti locus causing light-colored bellies, but they do not always show this coloration. Thus, the presence of the Aw allele seems to be doubtful in them. To ascertain whether the Aw allele is present, a two-pronged approach was used. First, we compared lengths of DNA fragments obtained from three PCRs conducted on them to the known fragment sizes generated from mouse strains exhibiting homozygosities of either a/a, A/A, or Aw/Aw. PCR I, PCR II, and PCR III amplify only in the A and Aw alleles, the a and Aw alleles, and the a allele, respectively, and we detected amplifications in strains with A/A and Aw/Aw by PCR I, in those with a/a and the Japanese house mouse by PCR II, and in those with a/a by PCR III. Second, we sequenced the exon 1A region of the agouti gene and obtained sequences corresponding to the above strains and the Japanese house mouse, but their sequences were similar to those of the a allele. We concluded that their agouti allele is not identical to the Aw allele and seems to be a novel type similar to the a allele.


Assuntos
Proteína Agouti Sinalizadora/genética , Alelos , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA
19.
Proc Natl Acad Sci U S A ; 114(52): 13768-13773, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29229828

RESUMO

The gut bacterial communities of mammals have profound effects on host fitness, but the processes that generate and maintain gut bacterial diversity remain poorly understood. We mapped compositional variation (i.e., ß-diversity) in the gut microbiotas of 136 pairs of wild mammalian species living throughout the Americas to assess how the distribution of mammals across geographic space influences the diversification of their gut bacteria. Comparing the gut microbiotas of sympatric and allopatric mammalian populations provided insights into the flow of gut bacteria within and between mammalian communities, revealing that spatial limits on bacterial dispersal promote ß-diversity between the gut microbiotas of mammalian species. Each geographic locale displayed a unique gut-microbiota composition that could not be fully explained by the diets and phylogenetic histories of the resident mammalian hosts, indicating that some gut bacteria are geographically restricted. Across the western hemisphere, the compositional overlap between the gut microbiotas of allopatric mammalian populations decayed exponentially with the geographic distance separating the hosts. The relationship between geographic distances among hosts and compositional differences among their gut microbiotas was independent of dietary and phylogenetic divergence among hosts. Within mammalian communities, we observed widespread sharing of gut bacteria between predator-prey host-species pairs, indicating horizontal transfer of gut bacteria through mammalian food chains. Collectively, these results indicate that compositional differences between the gut microbiotas of mammalian taxa are generated and maintained by limits to bacterial dispersal imposed by physical distance between hosts.


Assuntos
Biodiversidade , Cadeia Alimentar , Microbioma Gastrointestinal/fisiologia , Mamíferos/microbiologia , Filogenia , Animais
20.
Integr Comp Biol ; 57(4): 756-769, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28992216

RESUMO

Recent studies in model organisms have shown that compositional variation in the microbiome can affect a variety of host phenotypes including those related to digestion, development, immunity, and behavior. Natural variation in the microbiome within and between natural populations and species may also affect host phenotypes and thus fitness in the wild. Here, I review recent evidence that compositional variation in the microbiome may affect host phenotypes and fitness in wild mammals. Studies over the last decade indicate that natural variation in the mammalian microbiome may be important in the assistance of energy uptake from different diet types, detoxification of plant secondary compounds, protection from pathogens, chemical communication, and behavior. I discuss the importance of combining both field observations and manipulative experiments in a single system to fully characterize the functions and fitness effects of the microbiome. Finally, I discuss the evolutionary consequences of mammal-microbiome associations by proposing a framework to test how natural selection on hosts is mediated by the microbiome.


Assuntos
Evolução Biológica , Microbioma Gastrointestinal , Aptidão Genética , Mamíferos/microbiologia , Mamíferos/fisiologia , Animais , Mamíferos/genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA