RESUMO
PIK3CA (PI3Kα) is a lipid kinase commonly mutated in cancer, including â¼40% of hormone receptor-positive breast cancer. The most frequently observed mutants occur in the kinase and helical domains. Orthosteric PI3Kα inhibitors suffer from poor selectivity leading to undesirable side effects, most prominently hyperglycemia due to inhibition of wild-type (WT) PI3Kα. Here, we used molecular dynamics simulations and cryo-electron microscopy to identify an allosteric network that provides an explanation for how mutations favor PI3Kα activation. A DNA-encoded library screen leveraging electron microscopy-optimized constructs, differential enrichment, and an orthosteric-blocking compound led to the identification of RLY-2608, a first-in-class allosteric mutant-selective inhibitor of PI3Kα. RLY-2608 inhibited tumor growth in PIK3CA-mutant xenograft models with minimal impact on insulin, a marker of dysregulated glucose homeostasis. RLY-2608 elicited objective tumor responses in two patients diagnosed with advanced hormone receptor-positive breast cancer with kinase or helical domain PIK3CA mutations, with no observed WT PI3Kα-related toxicities. SIGNIFICANCE: Treatments for PIK3CA-mutant cancers are limited by toxicities associated with the inhibition of WT PI3Kα. Molecular dynamics, cryo-electron microscopy, and DNA-encoded libraries were used to develop RLY-2608, a first-in-class inhibitor that demonstrates mutant selectivity in patients. This marks the advance of clinical mutant-selective inhibition that overcomes limitations of orthosteric PI3Kα inhibitors. See related commentary by Gong and Vanhaesebroeck, p. 204 . See related article by Varkaris et al., p. 227 . This article is featured in Selected Articles from This Issue, p. 201.
Assuntos
Neoplasias da Mama , Hiperinsulinismo , Humanos , Feminino , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Microscopia Crioeletrônica , Neoplasias da Mama/tratamento farmacológico , Classe I de Fosfatidilinositol 3-Quinases/genética , Hiperinsulinismo/tratamento farmacológico , Hiperinsulinismo/genética , DNARESUMO
Alpha7 nicotinic acetylcholine receptors (α7nAChRs) are interesting not only because of their physiological effects, but because this receptor requires chaperones to traffic to cell surfaces (measured by alpha-bungarotoxin [αBGT] binding). While knockout (KO) animals and antibodies that react across species exist for tmem35a encoding the protein chaperone NACHO, commercially available antibodies against the chaperone RIC3 that allow Western blots across species have not been generally available. Further, no effects of deleting RIC3 function (ric3 KO) on α7nAChR expression are reported. Finally, antibodies against α7nAChRs have shown various deficiencies. We find mouse macrophages bind αBGT but lack NACHO. We also report on a new α7nAChR antibody and testing commercially available anti-RIC3 antibodies that react across species allowing Western blot analysis of in vitro cultures. These antibodies also react to specific RIC3 splice variants and single-nucleotide polymorphisms. Preliminary autoradiographic analysis reveals that ric3 KOs show subtle αBGT binding changes across different mouse brain regions, while tmem35a KOs show a complete loss of αBGT binding. These findings are inconsistent with effects observed in vitro, as RIC3 promotes αBGT binding to α7nAChRs expressed in HEK cells, even in the absence of NACHO. Collectively, additional regulatory factors are likely involved in the in vivo expression of α7nAChRs.