Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 2259, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145113

RESUMO

This contribution reports on the physical properties of the natural Namibian red Ochre used by the Himba Community in a form of a formulation, so called Otjize as a skin protective and beauty cream. The morphological and crystallographic studies of this red ochre validated its nano-scaled dominating phase of rhombohedral α-Fe2O3 nanocrystals with an additional hydrolized oxide component in a form of γ-FeOOH. The optical investigations showed that such a red ochre exhibits an exceptional UV filtration and a significant IR reflectivity substantiating its effectiveness as an effective UV-blocking & solar heat IR reflector in support of the low skin cancer rate within the Namibian Himba community. In addition, such nanocrystals exhibited a non-negligible antibacterial response against E. Coli & S. Aurus. This study seems confirming the effectiveness of the indigenous Otjize as an effective skin UV protection cream with a sound antimicrobial efficacy against e-Coli & S-Aurus.

2.
Sci Total Environ ; 559: 45-52, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27054492

RESUMO

Silage 'shrink' (i.e., fresh chop crop lost between ensiling and feedout) represents losses of potential animal nutrients which degrade air quality as volatile carbon compounds. Regulatory efforts have, in some cases, resulted in semi-mandatory mitigations (i.e., dairy farmers select a minimum number of mitigations from a list) to reduce silage shrink, mitigations often based on limited data of questionable relevance to large commercial silage piles where silage shrink may or may not be a problem of a magnitude equal to that assumed. Silage 'shrink' is generally ill defined, but can be expressed as losses of wet weight (WW), oven dry matter (oDM), and oDM corrected for volatiles lost during oven drying (vcoDM). As no research has documented shrink in large cereal silage piles, 6 piles ranging from 1456 to 6297tonnes (as built) were used. Three used cereal cut at an immature stage and three at a mature stage. Physiologically immature silages had generally higher (P<0.01) levels of total volatile fatty acids (especially acetic acid; P=0.01) and total alcohols (P<0.01) than did physiologically mature crops, suggesting higher carbon compound volatilization potential from immature silages. However expressed as WW, oDM and vcoDM, total shrink (as well as from where in the piles it occurred) was little impacted by crop maturity, and whole pile vcoDM shrink was only ~35g/kg. Overall, real shrink losses (vcoDM) of large well managed cereal silage piles were relatively low, and a lower potential contributor to aerosol emissions of volatile carbon compounds than has often been assumed. Losses from the silage mass and the exposed silage face were approximately equal contributors to vcoDM shrink. Mitigations to reduce these relatively low emission levels of volatile organic compounds from cereal silage piles should focus on the ensiled mass and the exposed silage face.

3.
Sci Total Environ ; 542(Pt A): 530-9, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26524271

RESUMO

Silage 'shrink' (i.e., loss of fresh chopped crop between ensiling and feedout) represents a nutrient loss which can degrade air quality as volatile carbon compounds, degrade surface waterways due to seepage, or degrade aquifers due to seepage. Virtually no research has documented shrink in large silage piles. The term 'shrink' is often ill defined, but can be expressed as losses of wet weight (WW), oven dry matter (oDM), and oDM corrected for volatiles lost in the drying oven (vcoDM). Corn silage piles (4 wedge, 2 rollover/wedge, 1 bunker) from 950 to 12,204 tonnes as built, on concrete (4), soil (2) and a combination (1) in California's San Joaquin Valley, using a bacterial inoculant, covered within 24 h with an oxygen barrier inner film and black/white outer plastic, fed out using large front end loaders through an electronic feed tracking system, and from the 2013 crop year, were used. Shrink as WW, oDM and vcoDM were 90±17, 68±18 and 28±21 g/kg, suggesting that much WW shrink is water and much oDM shrink is volatiles lost during analytical oven drying. Most shrink occurred in the silage mass with losses from exposed silage faces, as well as between exposed face silage removal and the total mixed ration mixer, being low. Silage bulk density, exposed silage face management and face use rate did not have obvious impacts on any shrink measure, but age of the silage pile during silage feedout impacted shrink losses ('older' silage piles being higher), but most strongly for WW shrink. Real shrink losses (i.e., vcoDM) of large well managed corn silage piles are low, the exposed silage face is a small portion of losses, and many proposed shrink mitigations appeared ineffective, possibly because shrink was low overall and they are largely directed at the exposed silage face.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA