Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neurotrauma ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597719

RESUMO

Of the four million children who experience a concussion each year, 30-50% of children will experience delayed recovery, where they will continue to experience symptoms more than two weeks after their injury. Delayed recovery from concussion encompasses emotional, behavioral, physical, and cognitive symptoms, and as such, there is an increased focus on developing an objective tool to determine risk of delayed recovery. This study aimed to identify a blood protein signature predictive of delayed recovery from concussion in children. Plasma samples were collected from children who presented to the Emergency Department at the Royal Children's Hospital, Melbourne, within 48h post-concussion. This study involved a discovery and validation phase. For the discovery phase, untargeted proteomics analysis was performed using single window acquisition of all theoretical mass spectra to identify blood proteins differentially abundant in samples from children with and without delayed recovery from concussion. A subset of these proteins was then validated in a separate participant cohort using multiple reaction monitoring and enzyme linked immunosorbent assay. A blood protein signature predictive of delayed recovery from concussion was modeled using a Support Vector Machine, a machine learning approach. In the discovery phase, 22 blood proteins were differentially abundant in age- and sex-matched samples from children with (n = 9) and without (n = 9) delayed recovery from concussion, six of whom were chosen for validation. In the validation phase, alpha-1-ACT was shown to be significantly lower in children with delayed recovery (n = 12) compared with those without delayed recovery (n = 28), those with orthopedic injuries (n = 7) and healthy controls (n = 33). A model consisting of alpha-1-ACT concentration stratified children based on recovery from concussion with an 0.88 area under the curve. We have identified that alpha-1-ACT differentiates between children at risk of delayed recovery from those without delayed recovery from concussion. To our knowledge, this is the first study to identify alpha-1-ACT as a potential marker of delayed recovery from concussion in children. Multi-site studies are required to further validate this finding before use in a clinical setting.

2.
J Neurosurg Pediatr ; : 1-9, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457794

RESUMO

OBJECTIVE: Posttraumatic headache (PTH) represents the most common acute and persistent symptom in children after concussion, yet there is no blood protein signature to stratify the risk of PTH after concussion to facilitate early intervention. This discovery study aimed to identify capillary blood protein markers, at emergency department (ED) presentation within 48 hours of concussion, to predict children at risk of persisting PTH at 2 weeks postinjury. METHODS: Capillary blood was collected using the Mitra Clamshell device from children aged 8-17 years who presented to the ED of the Royal Children's Hospital, Melbourne, Australia, within 48 hours of sustaining a concussion. Participants were followed up at 2 weeks postinjury to determine PTH status. PTH was defined per clinical guidelines as a new or worsened headache compared with preinjury. An untargeted proteomics analysis using data-independent acquisition (DIA) was performed. Principal component analysis and hierarchical clustering were used to reduce the dimensionality of the protein dataset. RESULTS: A total of 907 proteins were reproducibly identified from 82 children within 48 hours of concussion. The mean participant age was 12.78 years (SD 2.54 years, range 8-17 years); 70% of patients were male. Eighty percent met criteria for acute PTH in the ED, while one-third of participants with follow-up experienced PTH at 2 weeks postinjury (range 8-16 days). Hemoglobin subunit zeta (HBZ), cystatin B (CSTB), beta-ala-his dipeptidase (CNDP1), hemoglobin subunit gamma-1 (HBG1), and zyxin (ZYX) were weakly associated with PTH at 2 weeks postinjury based on up to a 7% increase in the PTH group despite nonsignificant Benjamini-Hochberg adjusted p values. CONCLUSIONS: This discovery study determined that no capillary blood protein markers, measured at ED presentation within 48 hours of concussion, can predict children at risk of persisting PTH at 2 weeks postinjury. While HBZ, CSTB, CNDP1, HBG1, and ZYX were weakly associated with PTH at 2 weeks postinjury, there was no specific blood protein signature predictor of PTH in children after concussion. There is an urgent need to discover new blood biomarkers associated with PTH to facilitate risk stratification and improve clinical management of pediatric concussion.

3.
J Proteomics ; 296: 105110, 2024 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-38325730

RESUMO

Clinical proteomics studies aiming to develop markers of clinical outcome or disease typically involve distinct discovery and validation stages, neither of which focus on the clinical applicability of the candidate markers studied. Our clinically useful selection of proteins (CUSP) protocol proposes a rational approach, with statistical and non-statistical components, to identify proteins for the validation phase of studies that could be most effective markers of disease or clinical outcome. Additionally, this protocol considers commercially available analysis methods for each selected protein to ensure that use of this prospective marker is easily translated into clinical practice. SIGNIFICANCE: When developing proteomic markers of clinical outcomes, there is currently no consideration at the validation stage of how to implement such markers into a clinical setting. This has been identified by several studies as a limitation to the progression of research findings from proteomics studies. When integrated into a proteomic workflow, the CUSP protocol allows for a strategically designed validation study that improves researchers' abilities to translate research findings from discovery-based proteomics into clinical practice.


Assuntos
Proteínas , Proteômica , Proteômica/métodos , Biomarcadores/metabolismo , Estudos Prospectivos
4.
Front Neurol ; 14: 989974, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36925940

RESUMO

Introduction: Blood biomarkers have been identified as an alternative tool for predicting secondary outcomes following concussion. This systematic review aimed to summarize the literature on blood biomarkers of secondary outcomes following concussion in both pediatric and adult cohorts. Methods: A literature search of Embase, Medline and PubMed was conducted. Two reviewers independently assessed retrieved studies to determine inclusion in systematic review synthesis. Results: A total of 1771 unique studies were retrieved, 58 of which were included in the final synthesis. S100B, GFAP and tau were identified as being associated with secondary outcomes following concussion. Seventeen percent of studies were performed in a solely pediatric setting. Conclusions: Validation of biomarkers associated with secondary outcomes following concussion have been largely limited by heterogeneous study cohorts and definitions of concussion and mTBI, presenting a hurdle for translation of these markers into clinical practice. Additionally, there was an underrepresentation of studies which investigated pediatric cohorts. Adult markers are not appropriate for children, therefore pediatric specific markers of secondary outcomes following concussion present the biggest gap in this field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA