Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 240: 118606, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32629406

RESUMO

A near-infrared (NIR) colorimetric fluorescence sensor, Cy7C3, based on heptamethine cyanine dye was synthesized for determining the presence of Cu2+ ions. The sensor showed highly sensitive fluorescence quenching toward Cu2+ ions in acetonitrile/buffer solution at physiological pH with long emission wavelength of 718 nm. Cy7C3 also provided an excellent selectivity to Cu2+ ions over other competing metal ions, with a low detection limit of 9 ppb, which was lower than the maximum concentration of Cu2+ ions in drinking water of U.S. EPA. Cy7C3 could achieve naked-eye detection of Cu2+ ions via the color change from blue to colorless, which allowed determination of Cu2+ ions in hydroponic fertilizers. Additionally, the sensor was developed to detect Cu2+ ions in HepG2 cancer cells via fluorescence imaging.


Assuntos
Cobre , Corantes Fluorescentes , Colorimetria , Limite de Detecção , Espectrometria de Fluorescência
2.
Annu Rev Phys Chem ; 67: 489-514, 2016 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27215820

RESUMO

Fluctuation correlation spectroscopy (FCS) is a well-established analytical technique traditionally used to monitor molecular diffusion in dilute solutions, the dynamics of chemical reactions, and molecular processes inside living cells. In this review, we present the recent use of FCS for measuring the size of colloidal nanoparticles in solution. We review the theoretical basis and experimental implementation of this technique and its advantages and limitations. In particular, we show examples of the use of FCS to measure the size of gold nanoparticles, monitor the rotational dynamics of gold nanorods, and investigate the formation of protein coronas on nanoparticles.

3.
Opt Express ; 23(9): 11290-311, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25969225

RESUMO

Near-field enhancement of the electric field by metallic nanostructures is important in non-linear optical applications such as surface enhanced Raman scattering. One approach to producing strong localization of the electric field is to couple a dark, non-radiating plasmonic mode with a broad dipolar resonator that is detectable in the far-field. However, characterizing or predicting the degree of the coupling between these modes for a complicated nanostructure can be quite challenging. Here we develop a robust method to solve the T-matrix, the matrix that predicts the scattered electric fields of the incident light, based on finite-difference time-domain (FDTD) simulations and least square fitting algorithms. This method allows us to simultaneously calculate the T-matrix for a broad spectral range. Using this method, the coupling between the electric dipole and quadrupole modes of spiky nanoshells is evaluated. It is shown that the built-in disorder in the structure of these nanoshells allows for coupling between the dipole modes of various orientations as well as coupling between the dipole and the quadrupole modes. A coupling strength of about 5% between these modes can explain the apparent interference features observed in the single particle scattering spectrum. This effect is experimentally verified by single particle backscattering measurements of spiky nanoshells. The modal interference in disordered spiky nanoshells can explain the origin of the spectrally broad quadrupole resonances that result in strong Quadrupole Enhanced Raman Scattering (QERS) in these nanoparticles.

4.
ACS Nano ; 8(9): 9025-34, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25157600

RESUMO

Dark, nonradiating plasmonic modes are important in the Raman enhancement efficiency of nanostructures. However, it is challenging to engineer such hotspots with predictable enhancement efficiency through synthesis routes. Here, we demonstrate that spiky nanoshells have designable quadrupole resonances that efficiently enhance Raman scattering with unprecedented reproducibility on the single particle level. The efficiency and reproducibility of Quadrupole Enhanced Raman Scattering (QERS) is due to their heterogeneous structure, which broadens the quadrupole resonance both spatially and spectrally. This spectral breadth allows for simultaneous enhancement of both the excitation and Stokes frequencies. The quadrupole resonance can be tuned by simple modifications of the nanoshell geometry. The combination of tunability, high efficiency, and reproducibility makes these nanoshells an excellent candidate for applications such as biosensing, nanoantennaes, and photovoltaics.


Assuntos
Nanoconchas/química , Análise Espectral Raman/métodos , Modelos Moleculares , Conformação Molecular , Propriedades de Superfície
5.
Nanoscale ; 6(19): 11451-61, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25155111

RESUMO

Plasmonic polymers are quasi one-dimensional assemblies of nanoparticles whose optical responses are governed by near-field coupling of localized surface plasmons. Through single particle extinction spectroscopy correlated with electron microscopy, we reveal the effect of the composition of the repeat unit, the chain length, and extent of disorder on the energies, intensities, and line shapes of the collective resonances of individual plasmonic polymers constructed from three different sizes of gold nanoparticles. Our combined experimental and theoretical analysis focuses on the superradiant plasmon mode, which results from the most attractive interactions along the nanoparticle chain and yields the lowest energy resonance in the spectrum. This superradiant mode redshifts with increasing chain length until an infinite chain limit, where additional increases in chain length cause negligible change in the energy of the superradiant mode. We find that, among plasmonic polymers of equal width comprising nanoparticles with different sizes, the onset of the infinite chain limit and its associated energy are dictated by the number of repeat units and not the overall length of the polymer. The intensities and linewidths of the superradiant mode relative to higher energy resonances, however, differ as the size and number of nanoparticles are varied in the plasmonic polymers studied here. These findings provide general guidelines for engineering the energies, intensities, and line shapes of the collective optical response of plasmonic polymers constructed from nanoparticles with sizes ranging from a few tens to one hundred nanometers.

6.
Nano Lett ; 13(10): 4779-84, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-24020385

RESUMO

For integrating and multiplexing of subwavelength plasmonic waveguides with other optical and electric components, complex architectures such as junctions with sharp turns are necessary. However, in addition to intrinsic losses, bending losses severely limit plasmon propagation. In the current work, we demonstrate that propagation of surface plasmon polaritons around 90° turns in silver nanoparticle chains occurs without bending losses. Using a far-field fluorescence method, bleach-imaged plasmon propagation (BlIPP), which creates a permanent map of the plasmonic near-field through bleaching of a fluorophore coated on top of a plasmonic waveguide, we measured propagation lengths at 633 nm for straight and bent silver nanoparticle chains of 8.0 ± 0.5 and 7.8 ± 0.4 µm, respectively. These propagation lengths were independent of the input polarization. We furthermore show that subradiant plasmon modes yield a longer propagation length compared to energy transport via excitation of super-radiant modes.


Assuntos
Transferência de Energia , Nanopartículas/química , Ressonância de Plasmônio de Superfície , Desenho Assistido por Computador , Luz , Refratometria , Espalhamento de Radiação , Prata/química
7.
Phys Chem Chem Phys ; 15(12): 4195-204, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23258430

RESUMO

In this work, we describe an electro-optic material capable of orthogonally switching the polarization of the localized surface plasmon resonance scattering of single gold nanorods, independent of their orientation. Liquid crystal samples are prepared in a sandwich configuration with electrodes arranged so that an applied voltage induces alignment-switching of the liquid crystal molecules covering individual gold nanorods. Due to the birefringence of the nematic liquid crystal, the reorientation in the nematic director alignment causes a change in the output polarization of the scattered light. We propose the underlying mechanism to be based on a homogeneous nematic to twisted nematic phase transition and provide support for it via Jones calculus by modelling the effect of ideally aligned homogeneous nematic and twisted nematic phases on polarized light transmitted through the sample. In the model, we include the effects of sample thickness and surface plasmon resonance wavelength, expressed in terms of the phase retardation, χ, on the observed output polarization. We find four distinctively different trends for the output polarization as a function of the incident polarization as χ is varied. Two of these cases provide reproducible orthogonal polarization switching of the surface plasmon resonance while maintaining a high degree of polarization. These results are verified experimentally with liquid crystal cells of different thicknesses. The deviation of the experimental samples from ideal behaviour can be explained by the inherent variations in the surface plasmon resonance maximum and local cell thickness.

8.
Nano Lett ; 12(9): 4977-82, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22924610

RESUMO

Plasmonic clusters can support Fano resonances, where the line shape characteristics are controlled by cluster geometry. Here we show that clusters with a hemicircular central disk surrounded by a circular ring of closely spaced, coupled nanodisks yield Fano-like and non-Fano-like spectra for orthogonal incident polarization orientations. When this structure is incorporated into an uniquely broadband, liquid crystal device geometry, the entire Fano resonance spectrum can be switched on and off in a voltage-dependent manner. A reversible transition between the Fano-like and non-Fano-like spectra is induced by relatively low (∼6 V) applied voltages, resulting in a complete on/off switching of the transparency window.


Assuntos
Cristais Líquidos/química , Cristais Líquidos/efeitos da radiação , Nanoestruturas/química , Processamento de Sinais Assistido por Computador/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Campos Eletromagnéticos , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Nanoestruturas/efeitos da radiação , Nanoestruturas/ultraestrutura , Tamanho da Partícula
9.
ACS Nano ; 6(8): 7177-84, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22830934

RESUMO

We report on the one-photon photoluminescence of gold nanorods with different aspect ratios. We measured photoluminescence and scattering spectra from 82 gold nanorods using single-particle spectroscopy. We found that the emission and scattering spectra closely resemble each other independent of the nanorod aspect ratio. We assign the photoluminescence to the radiative decay of the longitudinal surface plasmon generated after fast interconversion from excited electron-hole pairs that were initially created by 532 nm excitation. The emission intensity was converted to the quantum yield and was found to approximately exponentially decrease as the energy difference between the excitation and emission wavelength increased for gold nanorods with plasmon resonances between 600 and 800 nm. We compare this plasmon emission to its molecular analogue, fluorescence.


Assuntos
Ouro/química , Medições Luminescentes , Nanotubos/química , Nanotubos/ultraestrutura , Ressonância de Plasmônio de Superfície/métodos , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Propriedades de Superfície
10.
Acc Chem Res ; 45(11): 1936-45, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-22512668

RESUMO

A surface plasmon is the coherent oscillation of the conduction band electrons. When a metal nanoparticle is excited to produce surface plasmons, incident light is both scattered and absorbed, giving rise to brilliant colors. One available technique for measuring these processes, ensemble extinction spectroscopy, only measures the sum of scattering and absorption. Although the spectral responses of these processes are closely related, their relative efficiencies can differ significantly as a function of nanoparticle size and shape. For some applications, researchers may need techniques that can quantitatively measure absorption or scattering alone. Through advances in single particle spectroscopy, researchers can overcome this problem, separately determining the radiative (elastic and inelastic scattering) and nonradiative (absorption) properties of surface plasmons. Furthermore, because we can use the same sample preparation for both single particle spectroscopy measurements and electron microscopy, this technique provides detailed structural information and a direct correlation between optical properties and nanostructure morphology. In this Account, we present our quantitative investigations of both radiative (scattering and one-photon luminescence) and nonradiative (absorption) properties of the same individual plasmonic nanostructures employing different single particle spectroscopy techniques. In particular, we have used a combined setup to study the same structure with dark-field scattering spectroscopy, photothermal heterodyne imaging, confocal luminescence microscopy, and scanning electron microscopy. While Mie theory thoroughly describes the overall size dependence of scattering and absorption for nanospheres, our real samples deviate significantly from the predicted trend: their particle shape is not perfectly spherical, especially when supported on a substrate. Because of the high excitation rate in laser based single particle measurements, we can efficiently detect one-photon luminescence despite a low quantum yield. For gold nanoparticles, the luminescence spectrum follows the scattering response, and therefore we assigned it to the emission of a plasmon. Due to strong near-field interactions the plasmonic response of closely spaced nanoparticles deviates significantly from that of the constituent nanoparticles. This response arises from coupled surface plasmon modes that combine those of the individual nanoparticles. Our correlated structural and optical imaging strategy is especially powerful for understanding these collective modes and their dependence on the assembly geometry.

11.
Langmuir ; 28(24): 9131-9, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22515552

RESUMO

We present in situ observations of adsorption of bovine serum albumin (BSA) on citrate-stabilized gold nanospheres. We implemented scattering correlation spectroscopy as a tool to quantify changes in the nanoparticle brownian motion resulting from BSA adsorption onto the nanoparticle surface. Protein binding was observed as an increase in the nanoparticle hydrodynamic radius. Our results indicate the formation of a protein monolayer at similar albumin concentrations as those found in human blood. Additionally, by monitoring the frequency and intensity of individual scattering events caused by single gold nanoparticles passing the observation volume, we found that BSA did not induce colloidal aggregation, a relevant result from the toxicological viewpoint. Moreover, to elucidate the thermodynamics of the gold nanoparticle-BSA association, we measured an adsorption isotherm which was best described by an anticooperative binding model. The number of binding sites based on this model was consistent with a BSA monolayer in its native state. In contrast, experiments using poly(ethylene glycol)-capped gold nanoparticles revealed no evidence for adsorption of BSA.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Soroalbumina Bovina/química , Adsorção , Animais , Bovinos , Propriedades de Superfície
12.
Nano Lett ; 12(3): 1349-53, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22292470

RESUMO

Using light to exchange information offers large bandwidths and high speeds, but the miniaturization of optical components is limited by diffraction. Converting light into electron waves in metals allows one to overcome this problem. However, metals are lossy at optical frequencies and large-area fabrication of nanometer-sized structures by conventional top-down methods can be cost-prohibitive. We show electromagnetic energy transport with gold nanoparticles that were assembled into close-packed linear chains. The small interparticle distances enabled strong electromagnetic coupling causing the formation of low-loss subradiant plasmons, which facilitated energy propagation over many micrometers. Electrodynamic calculations confirmed the dark nature of the propagating mode and showed that disorder in the nanoparticle arrangement enhances energy transport, demonstrating the viability of using bottom-up nanoparticle assemblies for ultracompact opto-electronic devices.


Assuntos
Campos Eletromagnéticos , Modelos Químicos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Ressonância de Plasmônio de Superfície/métodos , Simulação por Computador , Luz , Tamanho da Partícula , Espalhamento de Radiação
13.
Nano Lett ; 11(9): 3797-802, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21861468

RESUMO

Confining visible light to nanoscale dimensions has become possible with surface plasmons. Many plasmonic elements have already been realized. Nanorods, for example, function as efficient optical antennas. However, active control of the plasmonic response remains a roadblock for building optical analogues of electronic circuits. We present a new approach to modulate the polarized scattering intensities of individual gold nanorods by 100% using liquid crystals with applied voltages as low as 4 V. This novel effect is based on the transition from a homogeneous to a twisted nematic phase of the liquid crystal covering the nanorods. With our method it will be possible to actively control optical antennas as well as other plasmonic elements.

14.
ACS Nano ; 5(6): 4892-901, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21561157

RESUMO

The interaction between adjacent metal nanoparticles within an assembly induces interesting collective plasmonic properties. Using dark-field imaging of plasmon scattering, we investigated rings of gold nanoparticles and observed that the images were dependent on the substrate. In particular, for nanoparticles assembled on carbon and gold substrates, intensity line sections perpendicular to the ring revealed a significant broadening beyond the optical resolution accompanied by an intensity dip in the middle of the line profile. Overall, this appeared in the image as a "splitting" into two offset circles along the direction of the scattered light polarization. This effect was not observed for a substrate with a low permittivity, such as glass. By varying the substrate as well as selecting different detected wavelengths and polarization components of the excitation light, we were able to confirm that the observed effect was due to coupling of collective plasmon modes with their induced image charges in the supporting substrates. These results suggest that plasmon scattering in extended nanostructures can be spatially modulated by tuning the permittivity of the substrate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA