Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 60(33): 2524-2536, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34357750

RESUMO

Lysine acetylation and deacetylation are critical for regulation of many cellular proteins. Despite the importance of this cycle, it is unclear how lysine deacetylase (KDAC) family members discriminate between acetylated proteins to react with a discrete set of substrates. Potential short-range interactions between KDAC8 and a known biologically relevant peptide substrate were identified using molecular dynamics (MD) simulations. Activity assays with a panel of peptides derived from this substrate supported a putative ionic interaction between arginine at the -1 substrate position and KDAC8 D101. Additional assays and MD simulations confirmed this novel interaction, which promotes deacetylation of substrates. Verification that a negatively charged residue at the 101 position is necessary for the ionic interaction and observed reactivity with the substrates was performed using KDAC8 derivatives. Notably, this interaction is specific to KDAC8, as KDAC1 and KDAC6 do not form this interaction and each KDAC has a different specificity profile with the peptide substrates, even though all KDACs could potentially form ionic interactions. When reacted with a panel of putative human KDAC substrates, KDAC8 preferentially deacetylated substrates containing an arginine at the -1 position. KDAC8 D101-R(-1) is a specific enzyme-substrate interaction that begins to explain how KDACs discriminate between potential substrates and how different KDAC family members can react with different subsets of acetylated proteins in cells. This multi-pronged approach will be extended to identify other critical interactions for KDAC8 substrate binding and determine critical interactions for other KDACs.


Assuntos
Histona Desacetilases/química , Histona Desacetilases/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Arginina/química , Arginina/metabolismo , Histona Desacetilases/biossíntese , Histona Desacetilases/isolamento & purificação , Cinética , Lisina/química , Lisina/metabolismo , Simulação de Dinâmica Molecular , Concentração Osmolar , Peptídeos/química , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Repressoras/biossíntese , Proteínas Repressoras/isolamento & purificação , Alinhamento de Sequência , Especificidade por Substrato
2.
PLoS One ; 16(4): e0241253, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33830997

RESUMO

A substantial fraction of the human genome is difficult to interrogate with short-read DNA sequencing technologies due to paralogy, complex haplotype structures, or tandem repeats. Long-read sequencing technologies, such as Oxford Nanopore's MinION, enable direct measurement of complex loci without introducing many of the biases inherent to short-read methods, though they suffer from relatively lower throughput. This limitation has motivated recent efforts to develop amplification-free strategies to target and enrich loci of interest for subsequent sequencing with long reads. Here, we present CaBagE, a method for target enrichment that is efficient and useful for sequencing large, structurally complex targets. The CaBagE method leverages the stable binding of Cas9 to its DNA target to protect desired fragments from digestion with exonuclease. Enriched DNA fragments are then sequenced with Oxford Nanopore's MinION long-read sequencing technology. Enrichment with CaBagE resulted in a median of 116X coverage (range 39-416) of target loci when tested on five genomic targets ranging from 4-20kb in length using healthy donor DNA. Four cancer gene targets were enriched in a single reaction and multiplexed on a single MinION flow cell. We further demonstrate the utility of CaBagE in two ALS patients with C9orf72 short tandem repeat expansions to produce genotype estimates commensurate with genotypes derived from repeat-primed PCR for each individual. With CaBagE there is a physical enrichment of on-target DNA in a given sample prior to sequencing. This feature allows adaptability across sequencing platforms and potential use as an enrichment strategy for applications beyond sequencing. CaBagE is a rapid enrichment method that can illuminate regions of the 'hidden genome' underlying human disease.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Sistemas CRISPR-Cas , Expansão das Repetições de DNA , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites , Nanoporos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA