Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 1027317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439809

RESUMO

The actinorhizal plant, Coriaria myrtifolia, is a neurotoxic plant species endemic to the western Mediterranean area, which forms a nitrogen-fixing symbiosis with members of Frankia cluster 2. Contrarily to other Frankia clusters, the occurrence and mode of dispersal for infective cluster 2 units outside of the host plant rhizosphere remains controversial. The present study was designed to investigate the structure of the microbiomes of C. myrtifolia phytosphere, rhizosphere, and soil samples extending outward linearly up to 1 km. Results showed that the epiphyte and endophyte communities were not significantly different from each other for most of the plant tissues. The communities associated with the below-ground tissues (nodule and root) were significantly different from those found on the above-ground tissues (fruit, leaves, and stems) and had a higher community richness. Coriaria myrtifolia phytomicrobiomes were dominated by Cyanobacteria for leaf, stem, and fruit while Actinobacteria and Proteobacteria were dominant in the root and nodule organelles. The nodule, a special niche for nitrogen fixation, was mainly inhabited by Frankia but contained several non-Frankia bacteria. Beside Frankia cluster 2, the presence of clusters 1, 4, and large numbers of cluster 3 strains have been detected in nodules, roots, and rhizospheres of C. myrtifolia. Despite Frankia being found in all plots using plant trapping bioassays with C. myrtifolia seedlings, Frankia cluster 2 was not detected in soil metagenomes showing the limits of detection by this approach. This result also suggests that in the absence of appropriate host plant species, Frankia cluster 2 has a reduced number of infective units present in the soil outward from the rhizosphere.

2.
J Genomics ; 8: 84-88, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33029225

RESUMO

Frankia sp. strains CgS1, CcI156 and CgMI4 were isolated from Casuarina glauca and C. cunninghamiana nodules. Here, we report the 5.26-, 5.33- and 5.20-Mbp draft genome sequences of Frankia sp. strains CgS1, CcI156 and CgMI4, respectively. Analysis of the genome revealed the presence of high numbers of secondary metabolic biosynthetic gene clusters.

3.
Microbiol Resour Announc ; 9(37)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32912917

RESUMO

Frankia sp. strain BMG5.11, which was isolated from Elaeagnus angustifolia nodules, is able to infect other actinorhizal plants, including Elaeagnaceae, Rhamnaceae, Colletieae, Gymnostoma, and Myricaceae Here, we report the 11.3-Mbp draft genome sequence of Frankia sp. strain BMG5.11, with a G+C content of 69.9% and 9,926 candidate protein-encoding genes.

4.
J Genomics ; 8: 11-15, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32064004

RESUMO

Frankia sp. strain B2 was isolated from Casuarina cunninghamiana nodules. Here, we report the 5.3-Mbp draft genome sequence of Frankia sp. strain B2 with a G+C content of 70.1 % and 4,663 candidate protein-encoding genes. Analysis of the genome revealed the presence of high numbers of secondary metabolic biosynthetic gene clusters.

5.
Microbiol Resour Announc ; 9(2)2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31919185

RESUMO

Here, we report the draft genome sequences obtained for 10 bacterial strains isolated from root nodules of Alnus trees. These members of the nodule microbiome were sequenced to determine their potential functional roles in plant health. The selected strains belong to the genera Rhodococcus, Kocuria, Rothia, Herbaspirillum, Streptomyces, and Thiopseudomonas.

6.
Antonie Van Leeuwenhoek ; 112(1): 67-74, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30069723

RESUMO

Frankia sp. strain BMG5.30 was isolated from root nodules of a Coriaria myrtifolia seedling on soil collected in Tunisia and represents the second cluster 2 isolate. Frankia sp. strain BMG5.30 was able to re-infect C. myrtifolia generating root nodules. Here, we report its 5.8-Mbp draft genome sequence with a G + C content of 70.03% and 4509 candidate protein-encoding genes.


Assuntos
Frankia/genética , Genoma Bacteriano , Nódulos Radiculares de Plantas/microbiologia , Composição de Bases , Sequência de Bases , Frankia/classificação , Frankia/isolamento & purificação , Frankia/fisiologia , Magnoliopsida/microbiologia , Dados de Sequência Molecular , Filogenia , Simbiose , Tunísia
7.
Front Plant Sci ; 9: 1494, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405656

RESUMO

Actinorhizal plants are able to establish a symbiotic relationship with Frankia bacteria leading to the formation of root nodules. The symbiotic interaction starts with the exchange of symbiotic signals in the soil between the plant and the bacteria. This molecular dialog involves signaling molecules that are responsible for the specific recognition of the plant host and its endosymbiont. Here we studied two factors potentially involved in signaling between Frankia casuarinae and its actinorhizal host Casuarina glauca: (1) the Root Hair Deforming Factor (CgRHDF) detected using a test based on the characteristic deformation of C. glauca root hairs inoculated with F. casuarinae and (2) a NIN activating factor (CgNINA) which is able to activate the expression of CgNIN, a symbiotic gene expressed during preinfection stages of root hair development. We showed that CgRHDF and CgNINA corresponded to small thermoresistant molecules. Both factors were also hydrophilic and resistant to a chitinase digestion indicating structural differences from rhizobial Nod factors (NFs) or mycorrhizal Myc-LCOs. We also investigated the presence of CgNINA and CgRHDF in 16 Frankia strains representative of Frankia diversity. High levels of root hair deformation (RHD) and activation of ProCgNIN were detected for Casuarina-infective strains from clade Ic and closely related strains from clade Ia unable to nodulate C. glauca. Lower levels were present for distantly related strains belonging to clade III. No CgRHDF or CgNINA could be detected for Frankia coriariae (Clade II) or for uninfective strains from clade IV.

8.
Manag Care ; 26(10): 32, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29068300

RESUMO

With regulations limiting differentiation between products, health plans must rethink consumer experience to meet expectations of today's consumers, who seek convenience, quality, and speed from their health care organizations. Many plans understand they need to connect more effectively with their end customers, but technological, cultural, and other obstacles are in the way.


Assuntos
Comportamento do Consumidor , Programas de Assistência Gerenciada , Humanos , Estados Unidos
9.
Genome Announc ; 5(41)2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-29025952

RESUMO

The genus Mesorhizobium contains many species that are able to form nitrogen-fixing nodules on plants of the legume family. Here, we report the draft genome sequences for three Mesorhizobium strains. The genome sizes of strains LCM 4576, LCM 4577, and ORS3428 were 7.24, 7.02, and 6.55 Mbp, respectively.

10.
Genome Announc ; 5(37)2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-28912324

RESUMO

Photorhabdus temperata strain Hm is an entomopathogenic bacterium that forms a symbiotic association with Heterorhabditis nematodes. Here, we report a 5.0-Mbp draft genome sequence for P. temperata strain Hm with a G+C content of 44.1% and containing 4,226 candidate protein-encoding genes.

11.
J Genomics ; 5: 119-123, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28943973

RESUMO

Frankia sp. strain CcI49 was isolated from Casuarina cunninghamiana nodules. However the strain was unable to re-infect Casuarina, but was able to infect other actinorhizal plants including Elaeagnaceae. Here, we report the 9.8-Mbp draft genome sequence of Frankia sp. strain CcI49 with a G+C content of 70.5 % and 7,441 candidate protein-encoding genes. Analysis of the genome revealed the presence of a bph operon involved in the degradation of biphenyls and polychlorinated biphenyls.

12.
Stand Genomic Sci ; 12: 51, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28878862

RESUMO

Frankia sp. NRRL B-16219 was directly isolated from a soil sample obtained from the rhizosphere of Ceanothus jepsonii growing in the USA. Its host plant range includes members of Elaeagnaceae species. Phylogenetically, strain NRRL B-16219 is closely related to "Frankia discariae" with a 16S rRNA gene similarity of 99.78%. Because of the lack of genetic tools for Frankia, our understanding of the bacterial signals involved during the plant infection process and the development of actinorhizal root nodules is very limited. Since the first three Frankia genomes were sequenced, additional genome sequences covering more diverse strains have helped provide insight into the depth of the pangenome and attempts to identify bacterial signaling molecules like the rhizobial canonical nod genes. The genome sequence of Frankia sp. strain NRRL B-16219 was generated and assembled into 289 contigs containing 8,032,739 bp with 71.7% GC content. Annotation of the genome identified 6211 protein-coding genes, 561 pseudogenes, 1758 hypothetical proteins and 53 RNA genes including 4 rRNA genes. The NRRL B-16219 draft genome contained genes homologous to the rhizobial common nodulation genes clustered in two areas. The first cluster contains nodACIJH genes whereas the second has nodAB and nodH genes in the upstream region. Phylogenetic analysis shows that Frankia nod genes are more deeply rooted than their sister groups from rhizobia. PCR-sequencing suggested the widespread occurrence of highly homologous nodA and nodB genes in microsymbionts of field collected Ceanothus americanus.

13.
J Genomics ; 5: 64-67, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28698736

RESUMO

Frankia sp. strain KB5 was isolated from Casuarina equisetifolia and previous studies have shown both nitrogenase and uptake hydrogenase activities under free-living conditions. Here, we report 5.5-Mbp draft genome sequence with a G+C content of 70.03 %, 4,958 candidate protein-encoding genes, and 2 rRNA operons.

14.
Genome Announc ; 5(24)2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28619804

RESUMO

Frankia sp. strain Cc1.17 is a member of the Frankia lineage 3, the organisms of which are able to reinfect plants of the Eleagnaceae, Rhamnaceae, and Myricaceae families and the genera Gynmnostoma and Alnus Here, we report the 8.4-Mbp draft genome sequence, with a G+C content of 72.14% and 6,721 candidate protein-coding genes.

15.
Genome Announc ; 5(18)2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28473386

RESUMO

The genus Rhizobium contains many species that are able to form nitrogen-fixing nodules on plants of the legume family. Here, we report the 5.5-Mb draft genome sequence of the salt-tolerant Rhizobium sp. strain LCM 4573, which has a G+C content of 61.2% and 5,356 candidate protein-encoding genes.

16.
Genome Announc ; 5(14)2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28385842

RESUMO

The genus Ensifer (formerly Sinorhizobium) contains many species able to form nitrogen-fixing nodules on plants of the legume family. Here, we report the 6.1-Mb draft genome sequence of Ensifer sp. strain LCM 4579, with a G+C content of 62.4% and 5,613 candidate protein-encoding genes.

17.
Genome Announc ; 5(15)2017 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-28408685

RESUMO

Here, we present draft genome sequences for three atypical Frankia strains (lineage 4) that were isolated from root nodules but are unable to reinfect actinorhizal plants. The genome sizes of Frankia sp. strains EUN1h, BMG5.36, and NRRL B16386 were 9.91, 11.20, and 9.43 Mbp, respectively.

18.
Genome Announc ; 5(15)2017 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-28408686

RESUMO

The genus Rhizobium contains many species able to form nitrogen-fixing nodules on plants of the legume family. Here, we report the 6.9-Mbp draft genome sequence of Rhizobium sp. strain RSm-3, with a G+C content of 61.4% and 6,511 candidate protein-coding genes.

19.
Genome Announc ; 3(6)2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26679592

RESUMO

Frankia strain ACN1(ag) is a member of Frankia lineage Ia, which are able to re-infect plants of the Betulaceae and Myricaceae families. Here, we report a 7.5-Mbp draft genome sequence with a G+C content of 72.35% and 5,687 candidate protein-encoding genes.

20.
J Muscle Res Cell Motil ; 36(4-5): 329-37, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26429793

RESUMO

The heart is exquisitely sensitive to mechanical stimuli and adapts to increased demands for work by enlarging the cardiomyocytes. In order to determine links between mechano-transduction mechanisms and hypertrophy, neonatal rat ventricular myocytes (NRVM) were subjected to physiologic strain for analysis of the dynamics of the actin capping protein, CapZ, and its post-translational modifications (PTM). CapZ binding rates were assessed after strain by fluorescence recovery after photobleaching (FRAP) of green fluorescent protein (GFP) expressed by a GFP-CapZß1 adenovirus. To assess the role of the protein kinase C epsilon isoform (PKCε), rest or cyclic strain were combined with specific PKCε activation by constitutively active PKCε, or by inhibition with dominant negative PKCε (dnPKCε) expression. Significant increases of CapZ FRAP kinetics with strain were blunted by dnPKCε, suggesting that PKCε is involved in mechano-transduction signaling. Similar combinations of strain and PKC regulation in NRVMs were studied by PTM profiles of CapZß1 using quantitative two-dimensional gel electrophoresis. The significantly increased charge on CapZ seen with mechanical strain was reversed by the addition of dnPKCε. Potential clinical relevance was confirmed in vivo by PTMs of CapZ in the failing heart of one-year old transgenic mice over-expressing PKCε. Furthermore, with strain there was significant PKCε translocation to the Z-disc and co-localization with CapZß1 or α-actinin, which was quantified on confocal images. A hypothetical model is presented proposing that one destination of the mechanotransduction signaling pathways might be for PTMs of CapZ thereby regulating actin capping and filament assembly.


Assuntos
Proteína de Capeamento de Actina CapZ/metabolismo , Miócitos Cardíacos/metabolismo , Proteína Quinase C-épsilon/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Estresse Mecânico , Actinina/genética , Actinina/metabolismo , Animais , Proteína de Capeamento de Actina CapZ/genética , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/citologia , Proteína Quinase C-épsilon/genética , Transporte Proteico/fisiologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA