Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Photosynth Res ; 88(1): 73-81, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16453061

RESUMO

The regulatory properties of maize phosphoenolpyruvate carboxylase were significantly altered by site-directed mutagenesis of residues 226 through 232. This conserved sequence element, RTDEIRR, is part of a surface loop at the dimer interface. Mutation of individual residues in this sequence caused various kinetic changes, including desensitization of the enzyme to key allosteric effectors or alteration of the K(0.5 PEP) for the substrate phosphoenolpyruvate. R231A, and especially R232Q, displayed decreased apparent affinity for the activator glucose-6-phosphate. Apparent affinity for the activator glycine was reduced in D228N and R232Q, while the maximum activation caused by glycine was greatly reduced in R226Q and E229A. R226Q and E229A also showed significantly lower sensitivity to the inhibitors malate and aspartate. E229A exhibited a low K(0.5 PEP), while the K(0.5 PEP )of R232Q was significantly higher than that of wild type. Thus these seven residues are critical determinants of the enzyme's kinetic responses to activators, inhibitors and substrate. The present results support an earlier suggestion that Arg 231 contributes to the binding site of the allosteric activator glucose-6-phosphate, and are consistent with other proposals that the substrate phosphoenolpyruvate allosterically activates the enzyme by binding at or near the glucose-6-phosphate site. The results also suggest that the glycine binding site may be contiguous with the glucose-6-phosphate binding site. Glu 229, which extends from this interface region through the interior of the protein and emerges near the aspartate binding site, may provide a physical link for propagating conformational changes between the allosteric activator and inhibitor binding regions.


Assuntos
Fosfoenolpiruvato Carboxilase/química , Fosfoenolpiruvato Carboxilase/metabolismo , Zea mays/enzimologia , Ácido Aspártico/metabolismo , Ativação Enzimática , Glicina/metabolismo , Cinética , Malatos/metabolismo , Mutagênese Sítio-Dirigida , Fosfoenolpiruvato Carboxilase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA