Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Haematologica ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572555

RESUMO

Anti-CD117 monoclonal antibody (mAb) agents have emerged as exciting alternative conditioning strategies to traditional genotoxic irradiation or chemotherapy conditioning for both allogeneic and autologous gene-modified hematopoietic stem cell transplantation. Further, these agents are concurrently being explored in the treatment of mast cell disorders. Despite promising results in animal models and more recently in patients, the short-term and long-term effects of these treatments have not been fully explored. We conducted rigorous assessments to evaluate the effects of antagonistic anti-mCD117 mAb, ACK2, on hematopoiesis in wild-type (WT) and Fanconi Anemia (FA) mice. Importantly, we found no evidence of short-term DNA damage in either setting following this treatment suggesting that ACK2 does not induce immediate genotoxicity, providing crucial insights into its safety profile. Surprisingly, FA mice exhibited an increase in colony formation post-ACK2 treatment without accompanying DNA damage, indicating a potential targeting of hematopoietic stem cells (HSCs) and expansion of hematopoietic progenitor cells. Moreover, the long-term phenotypic and functional changes in hematopoietic stem and progenitor cells did not significantly differ between the ACK2-treated and control groups, in either setting, supporting that ACK2 does not adversely affect hematopoietic capacity. These finding underscore the safety of these agents when utilized as a short-course treatment in the conditioning context, as they did not induce significant changes in DNA damage amongst hematopoietic stem or progenitor cells. However, through a comparison of gene expression via single-cell RNA sequencing between untreated and treated mice, it was revealed that the ACK2 mAb, via c-Kit downregulation, effectively modulated the MAPK pathway with Fos down-regulation in WT and FA mice. Importantly, this modulation was achieved without causing prolonged disruptions. These findings validate the safety of the treatment and also enhance our understanding of its intricate mode of action at the molecular level.

2.
Transplant Cell Ther ; 29(3): 164.e1-164.e9, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35995393

RESUMO

Hematopoietic stem cell transplantation (HSCT) is a curative treatment for patients with many different blood and immune diseases; however, current treatment regimens contain non-specific chemotherapy and/or irradiation conditioning, which carry both short-term and long-term toxicities. The use of such agents may be particularly harmful for patients with Fanconi anemia (FA), who have genetic mutations resulting in deficiencies in DNA repair, leading to increased sensitivity to genotoxic agents. mAb-based conditioning has been proposed as an alternative conditioning strategy for HSCT that minimizes these toxicities by eliminating collateral tissue damage. Given the high need for improved treatments for FA patients, we aimed to evaluate the efficacy of different αCD117 mAb agents and immunosuppression on hematopoietic stem cell (HSC) depletion and explored their ability to safely establish therapeutic donor hematopoiesis post-HSCT in FA disease models. We evaluated the effects of different concentrations of αCD117 mAbs in vitro and in vivo on HSC growth and depletion. To further assess the efficacy of mAb-based conditioning, Fancd2-/- animals were treated with αCD117 mAb and combination agents with αCD47 mAb and antibody-drug-conjugates (ADCs) for syngeneic HSCT. Immunosuppression αCD4 mAb was added to all in vivo experiments due to a slightly mismatched background between the donor grafts and recipients. Immunosuppressant cocktails were also given to Fancd2-/- animals to evaluate the efficacy of mAb-based conditioning in the haploidentical setting. Statistical analyses were done using the unpaired t-test. We found that antagonistic αCD117 mAbs alone do not deplete host HSCs or enhance HSCT effectively in FA mouse models; however, the potency of αCD117 mAbs can be safely augmented through combination with αCD47 mAbs and with ADCs, both of which lead to profound HSC depletion and establishment of long-term donor engraftment post-syngeneic HSCT. This is the first time these approaches have been tested in parallel in any disease setting, with the greatest donor engraftment observed after CD117-ADC conditioning. Interestingly, our data also suggest that HSC-targeted conditioning is not necessary in HSCT for FA, as high donor HSC engraftment was observed with mAb-based immune suppression alone with immunologically matched and mismatched haploidentical grafts. These results demonstrate the safety and efficacy of several different non-genotoxic mAb-based conditioning strategies in the FA setting. In addition, they show that if sufficient immunosuppression is given to obtain initial donor HSC engraftment, turnover of a majority of the hematolymphoid system can result, likely owing to the survival advantage of wild-type HSCs over FA HSCs. Such non-toxic all-mAb-based conditioning strategies could be transformative for FA patients and those with other hematolymphoid diseases.


Assuntos
Anemia de Fanconi , Transplante de Células-Tronco Hematopoéticas , Animais , Camundongos , Anemia de Fanconi/etiologia , Anemia de Fanconi/terapia , Condicionamento Pré-Transplante/métodos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Imunossupressores , Terapia de Imunossupressão/métodos , Anticorpos Monoclonais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA