Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Aging Dis ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38913044

RESUMO

While the vast majority of Alzheimer's disease (AD) is non-familial, the animal models of AD that are commonly used for studying disease pathogenesis and development of therapy are mostly of a familial form. We aimed to generate a model reminiscent of the etiologies related to the common late-onset Alzheimer's disease (LOAD) sporadic disease that will recapitulate AD/dementia features. Naïve female mice underwent ovariectomy (OVX) to accelerate aging/menopause and were fed a high fat-sugar-salt diet to expose them to factors associated with increased risk of development of dementia/AD. The OVX mice fed a high fat-sugar-salt diet responded by dysregulation of glucose/insulin, lipid, and liver function homeostasis and increased body weight with slightly increased blood pressure. These mice developed AD-brain pathology (amyloid and tangle pathologies), gliosis (increased burden of astrocytes and activated microglia), impaied blood vessel density and neoangiogenesis, with cognitive impairment. Thus, OVX mice fed on a high fat-sugar-salt diet imitate a non-familial sporadic/environmental form of AD/dementia with vascular damage. This model is reminiscent of the etiologies related to the LOAD sporadic disease that represents a high portion of AD patients, with an added value of presenting concomitantly AD and vascular pathology, which is a common condition in dementia. Our model can, thereby, provide a valuable tool for studying disease pathogenesis and for the development of therapeutic approaches.

2.
Cells ; 12(7)2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-37048079

RESUMO

We recently reported the benefit of the IV transferring of active exogenous mitochondria in a short-term pharmacological AD (Alzheimer's disease) model. We have now explored the efficacy of mitochondrial transfer in 5XFAD transgenic mice, aiming to explore the underlying mechanism by which the IV-injected mitochondria affect the diseased brain. Mitochondrial transfer in 5XFAD ameliorated cognitive impairment, amyloid burden, and mitochondrial dysfunction. Exogenously injected mitochondria were detected in the liver but not in the brain. We detected alterations in brain proteome, implicating synapse-related processes, ubiquitination/proteasome-related processes, phagocytosis, and mitochondria-related factors, which may lead to the amelioration of disease. These changes were accompanied by proteome/metabolome alterations in the liver, including pathways of glucose, glutathione, amino acids, biogenic amines, and sphingolipids. Altered liver metabolites were also detected in the serum of the treated mice, particularly metabolites that are known to affect neurodegenerative processes, such as carnosine, putrescine, C24:1-OH sphingomyelin, and amino acids, which serve as neurotransmitters or their precursors. Our results suggest that the beneficial effect of mitochondrial transfer in the 5XFAD mice is mediated by metabolic signaling from the liver via the serum to the brain, where it induces protective effects. The high efficacy of the mitochondrial transfer may offer a novel AD therapy.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Camundongos , Animais , Peptídeos beta-Amiloides/metabolismo , Proteoma/metabolismo , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Mitocôndrias/metabolismo , Camundongos Transgênicos , Fígado/metabolismo
3.
Front Cell Neurosci ; 16: 1076281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531136

RESUMO

Injury to the central nervous system induces neuronal cell death and astrogliosis, an astrocyte-mediated response that has both a beneficial and detrimental impact on surrounding neuronal cells. The circumstance however, in which astrogliosis improves neuronal survival after an injury is not fully characterized. We have recently shown that Semaphorin4B (Sema4B) in the cortex is mostly expressed by astrocytes, and in its absence, astrocyte activation after an injury is altered. Here we find that in Sema4B knockout mice, neuronal cell death is reduced; as a result, more neurons survive near the injury site. Sema4B protein applied directly to neurons does not affect neuronal survival. In contrast, survival of wild-type neurons is increased when plated on glial culture isolated from the Sema4B knockout mice, as compared to Sema4B heterozygous cultures. Furthermore, this increased survival is also observed with conditioned medium collected from glial cultures of Sema4B knockout mice compared to heterozygous mice. This indicates that the increased survival is glial cell-dependent and mediated by a secreted factor(s). Together, our results imply that following injury, the lack of Sema4B expression in glial cells improves neuronal survival either as a result of reduced toxic factors, or perhaps increased survival factors under these conditions.

4.
Front Neurosci ; 16: 937663, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36033613

RESUMO

Obesity and hyperglycemia are risk factors for cognitive decline and for the development of Alzheimer's Disease (AD). Bariatric surgery is an effective treatment for obesity that was shown to improve cognitive decline in obese patients. Bariatric surgery was shown to exert weight loss independent effects on metabolic diseases such as type 2 diabetes. We tested whether sleeve gastrectomy (SG), a common bariatric surgery, can affect the cognitive impairment in lean, normoglycemic female 5xFAD mice, a genetic model for AD. 5xFAD mice and wild-type (WT) littermates underwent SG or sham surgery at the age of 5 months and were tested for metabolic, behavioral, and molecular phenotypes 90 days later. SG led to a reduction in blood glucose levels and total plasma cholesterol levels in 5xFAD mice without inducing weight loss. However, the surgery did not affect the outcomes of long-term spatial memory tests in these mice. Analysis of ß-Amyloid plaques corroborated the behavioral studies in showing no effect of surgery on the molecular phenotype of 5xFAD mice. In conclusion, SG leads to an improved metabolic profile in lean female 5xFAD mice without inducing weight loss but does not affect the brain pathology or behavioral phenotype. Our results suggest that the positive effects of bariatric surgery on cognitive decline in obese patients are likely attributed to weight loss and improvement in obesity sequelae, and not to weight loss independent effects of surgery.

5.
EMBO Mol Med ; 13(10): e14554, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34486811

RESUMO

This work employs adult polyglucosan body disease (APBD) models to explore the efficacy and mechanism of action of the polyglucosan-reducing compound 144DG11. APBD is a glycogen storage disorder (GSD) caused by glycogen branching enzyme (GBE) deficiency causing accumulation of poorly branched glycogen inclusions called polyglucosans. 144DG11 improved survival and motor parameters in a GBE knockin (Gbeys/ys ) APBD mouse model. 144DG11 reduced polyglucosan and glycogen in brain, liver, heart, and peripheral nerve. Indirect calorimetry experiments revealed that 144DG11 increases carbohydrate burn at the expense of fat burn, suggesting metabolic mobilization of pathogenic polyglucosan. At the cellular level, 144DG11 increased glycolytic, mitochondrial, and total ATP production. The molecular target of 144DG11 is the lysosomal membrane protein LAMP1, whose interaction with the compound, similar to LAMP1 knockdown, enhanced autolysosomal degradation of glycogen and lysosomal acidification. 144DG11 also enhanced mitochondrial activity and modulated lysosomal features as revealed by bioenergetic, image-based phenotyping and proteomics analyses. As an effective lysosomal targeting therapy in a GSD model, 144DG11 could be developed into a safe and efficacious glycogen and lysosomal storage disease therapy.


Assuntos
Doença de Depósito de Glicogênio , Doenças do Sistema Nervoso , Animais , Glucanos , Glicogênio , Camundongos
6.
EBioMedicine ; 50: 274-289, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31787569

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects motor neurons (MNs). It was shown that human astrocytes with mutations in genes associated with ALS, like C9orf72 (C9) or SOD1, reduce survival of MNs. Astrocyte toxicity may be related to their dysfunction or the release of neurotoxic factors. METHODS: We used human induced pluripotent stem cell-derived astrocytes from ALS patients carrying C9orf72 mutations and non-affected donors. We utilized these cells to investigate astrocytic induced neuronal toxicity, changes in astrocyte transcription profile as well as changes in secretome profiles. FINDINGS: We report that C9-mutated astrocytes are toxic to MNs via soluble factors. The toxic effects of astrocytes are positively correlated with the length of astrocyte propagation in culture, consistent with the age-related nature of ALS. We show that C9-mutated astrocytes downregulate the secretion of several antioxidant proteins. In line with these findings, we show increased astrocytic oxidative stress and senescence. Importantly, media conditioned by C9-astrocytes increased oxidative stress in wild type MNs. INTERPRETATION: Our results suggest that dysfunction of C9-astrocytes leads to oxidative stress of themselves and MNs, which probably contributes to neurodegeneration. Our findings suggest that therapeutic strategies in familial ALS must not only target MNs but also focus on astrocytes to abrogate nervous system injury.


Assuntos
Esclerose Lateral Amiotrófica/etiologia , Esclerose Lateral Amiotrófica/metabolismo , Astrócitos/citologia , Astrócitos/metabolismo , Proteína C9orf72/genética , Células-Tronco Pluripotentes Induzidas/citologia , Mutação , Estresse Oxidativo , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Biomarcadores , Células Cultivadas , Reprogramação Celular , Senescência Celular/genética , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Ácido Glutâmico/metabolismo , Humanos , Camundongos , Neurônios Motores/metabolismo , Proteômica/métodos , Espécies Reativas de Oxigênio/metabolismo
7.
J Neurosci ; 38(24): 5478-5494, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29773756

RESUMO

Axon degeneration and disruption of neuromuscular junctions (NMJs) are key events in amyotrophic lateral sclerosis (ALS) pathology. Although the disease's etiology is not fully understood, it is thought to involve a non-cell-autonomous mechanism and alterations in RNA metabolism. Here, we identified reduced levels of miR126-5p in presymptomatic ALS male mice models, and an increase in its targets: axon destabilizing Type 3 Semaphorins and their coreceptor Neuropilins. Using compartmentalized in vitro cocultures, we demonstrated that myocytes expressing diverse ALS-causing mutations promote axon degeneration and NMJ dysfunction, which were inhibited by applying Neuropilin1 blocking antibody. Finally, overexpressing miR126-5p is sufficient to transiently rescue axon degeneration and NMJ disruption both in vitro and in vivo Thus, we demonstrate a novel mechanism underlying ALS pathology, in which alterations in miR126-5p facilitate a non-cell-autonomous mechanism of motor neuron degeneration in ALS.SIGNIFICANCE STATEMENT Despite some progress, currently no effective treatment is available for amyotrophic lateral sclerosis (ALS). We suggest a novel regulatory role for miR126-5p in ALS and demonstrate, for the first time, a mechanism by which alterations in miR126-5p contribute to axon degeneration and NMJ disruption observed in ALS. We show that miR126-5p is altered in ALS models and that it can modulate Sema3 and NRP protein expression. Furthermore, NRP1 elevations in motor neurons and muscle secretion of Sema3A contribute to axon degeneration and NMJ disruption in ALS. Finally, overexpressing miR126-5p is sufficient to transiently rescue NMJ disruption and axon degeneration both in vitro and in vivo.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , MicroRNAs/metabolismo , Degeneração Neural/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Axônios/metabolismo , Axônios/patologia , Regulação para Baixo , Regulação da Expressão Gênica , Humanos , Camundongos , MicroRNAs/genética , Degeneração Neural/genética , Degeneração Neural/patologia , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Neuropilina-1/biossíntese , Neuropilina-1/genética , Semaforina-3A/biossíntese , Semaforina-3A/genética
8.
Sci Rep ; 8(1): 93, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29311693

RESUMO

Inhibition of genes is a powerful approach to study their function. While RNA interference is a widely used method to achieve this goal, mounting evidence indicates that such an approach is prone to off-target effects. An alternative approach to gene function inhibition is genetic mutation, such as the CRISPR/cas9 method. A recent report, however, demonstrated that genetic mutation and inhibition of gene expression do not always give corresponding results. This can be explained by off-target effects, but it was recently shown, at least in one case, that these differences are the result of a compensatory mechanism induced only by genetic mutation. We present here a combination of RNA inhibition and CRISPR/cas9 methods to identify possible off targets as well as potential compensatory effects. This approach is demonstrated by testing a possible role for Sema4B in glioma biology, in which our results implicate Sema4B as having a critical function. In stark contrast, by using shRNA over CRISPR/cas9 combined methodology, we clearly demonstrate that the Sema4B targeted shRNA effects on cell proliferation is the result of off-target effects. Nevertheless, it also revealed that certain splice variants of Sema4B are important for the ability of glioma cells to grow as individual clones.


Assuntos
Sistemas CRISPR-Cas , RNA Interferente Pequeno/genética , Animais , Morte Celular/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Xenoenxertos , Humanos , Camundongos , Interferência de RNA , Semaforinas/genética , Semaforinas/metabolismo
9.
Sci Rep ; 7: 43421, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28266523

RESUMO

Adenosine to Inosine (A-to-I) RNA editing is a co- or post-transcriptional mechanism that modifies genomically encoded nucleotides at the RNA level. A-to-I RNA editing is abundant in the brain, and altered editing levels have been reported in various neurological pathologies and following spinal cord injury (SCI). The prevailing concept is that the RNA editing process itself is dysregulated by brain pathologies. Here we analyzed recent RNA-seq data, and found that, except for few mammalian conserved editing sites, editing is significantly higher in neurons than in other cell populations of the brain. We studied A-to-I RNA editing in stab wound injury (SWI) and SCI models and showed that the apparent under-editing observed after injury correlates with an approximately 20% reduction in the relative density of neurons, due to cell death and immune cell infiltration that may account for the observed under-editing. Studies of neuronal and astrocyte cultures and a computational analysis of SCI RNA-seq data further supported the possibility that a reduction in neuronal density is responsible for alterations in the tissue-wide editing patterns upon injury. Thus, our data suggest that the case for a mechanistic linkage between A-to-I RNA editing and brain pathologies should be revisited.


Assuntos
Astrócitos/metabolismo , Córtex Cerebral/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Oligodendroglia/metabolismo , RNA/metabolismo , Traumatismos da Medula Espinal/metabolismo , Adenosina/genética , Adenosina/metabolismo , Animais , Astrócitos/patologia , Córtex Cerebral/lesões , Córtex Cerebral/patologia , Feminino , Inosina/genética , Inosina/metabolismo , Camundongos , Microglia/patologia , Neurônios/patologia , Oligodendroglia/patologia , Especificidade de Órgãos , Cultura Primária de Células , RNA/genética , Edição de RNA , Medula Espinal/metabolismo , Medula Espinal/patologia , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia
10.
eNeuro ; 2(3)2015.
Artigo em Inglês | MEDLINE | ID: mdl-26464987

RESUMO

Injury to the CNS induces astrogliosis, an astrocyte-mediated response that has both beneficial and detrimental impacts on surrounding neural and non-neural cells. The precise signaling events underlying astrogliosis are not fully characterized. Here, we show that astrocyte activation was altered and proliferation was reduced in Semaphorin 4B (Sema4B)-deficient mice following injury. Proliferation of cultured Sema4B(-/-) astrocytes was also significantly reduced. In contrast to its expected role as a ligand, the Sema4B ectodomain was not able to rescue Sema4B(-/-) astrocyte proliferation but instead acted as an antagonist against Sema4B(+/-) astrocytes. Furthermore, the effects of Sema4B on astrocyte proliferation were dependent on phosphorylation of the intracellular domain at Ser825. Our results suggest that Sema4B functions as an astrocyte receptor, defining a novel signaling pathway that regulates astrogliosis after CNS injury.

11.
PLoS One ; 8(7): e70085, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23922915

RESUMO

Axon guidance molecules determine the pattern of neuronal circuits. Accuracy of the process is ensured by unknown mechanisms that correct early guidance errors. Since the time frame of error correction in Sema3A null mice partly overlaps with the period of naturally occurring cell death in dorsal root ganglia (DRG) development, we tested the hypothesis that apoptosis of misguided neurons enables error correction. We crossed BAX null mice, in which DRG apoptosis is blocked, with Sema3A null mice to induce errors. Analyses of these double-null mouse embryos showed that the elimination of abnormal projections is not blocked in the absence of BAX. Surprisingly however, there are fewer surviving neurons in Sema3A null or Sema3A/BAX double-null newborn mice than in wild-type mice. These results suggest that guidance errors are corrected by a BAX-independent cell death mechanism. Thus, aberrant axonal guidance may lead to reductions in neuronal numbers to suboptimal levels, perhaps increasing the likelihood of neuropathological consequences later in life.


Assuntos
Apoptose , Gânglios Espinais/citologia , Gânglios Espinais/embriologia , Semaforina-3A/genética , Proteína X Associada a bcl-2/genética , Animais , Sobrevivência Celular , Deleção de Genes , Camundongos , Camundongos Knockout , Neurônios/citologia , Neurônios/metabolismo
12.
Neurobiol Learn Mem ; 97(1): 1-6, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21907816

RESUMO

Rho-associated kinase (ROCK) is intimately involved in cortical neuronal morphogenesis. The present study explores the roles of ROCK in conditioned taste aversion (CTA) memory formation in gustatory cortex (GC) in adult rat. Microinjection of the ROCK inhibitor Y-27632 into the GC 30 min before CTA training or 10 min after the conditioned stimulus (CS) impaired long-term CTA memory (LTM) formation. ROCK inhibitor had no effect on taste aversion when injected before the first LTM test day and did not alter taste aversion on subsequent test days. Microinjection of ROCK inhibitor into GC 30 min before preexposure to the taste CS had no effect on latent inhibition of CTA learning suggesting that ROCK is involved in CS-US association rather than taste learning per se. Cumulatively, these results show that ROCK is needed for normal CTA memory formation but not retrieval, relearning or incidental taste learning.


Assuntos
Aprendizagem da Esquiva/fisiologia , Córtex Cerebral/fisiologia , Condicionamento Clássico/fisiologia , Memória/fisiologia , Quinases Associadas a rho/metabolismo , Amidas/farmacologia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Condicionamento Clássico/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Piridinas/farmacologia , Ratos , Ratos Wistar , Paladar/efeitos dos fármacos , Paladar/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA