Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Pharmacotherapy ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686648

RESUMO

BACKGROUND: Major bleeding occurs annually in 1%-3% of patients on vitamin K antagonists (VKAs), despite close monitoring. Genetic variants in proteins involved in VKA response may affect this risk. AIM: To determine the association of genetic variants (cytochrome P450 enzymes 2C9 [CYP2C9] and 4F2 [CYP4F2], gamma-glutamyl carboxylase [GGCX]) with major bleeding in VKA users, separately and combined, including vitamin K epoxide reductase complex subunit-1 (VKORC1). METHODS: A case-cohort study was established within the BLEEDS cohort, which includes 16,570 patients who initiated VKAs between 2012 and 2014. We selected all 326 major bleeding cases that occurred during 17,613 years of follow-up and a random subcohort of 978 patients. We determined variants in CYP2C9, CYP4F2, GGCX, VKORC1 and evaluated the interaction between variant genotypes. Hazard ratios for major bleeding with 95% confidence intervals (95% CI) were estimated by weighted Cox regression. RESULTS: Genotype was determined in 256 cases and 783 subcohort members. Phenprocoumon was the most prescribed VKA for both cases and the subcohort (78% and 75%, respectively). Patients with major bleeding were slightly older than subcohort patients. CYP4F2-TT carriership was associated with a 1.6-fold (95% CI 0.9-2.8) increased risk of major bleeding compared with CC-alleles, albeit not statistically significant. For the CYP2C9 and GGCX variants instead, the major bleeding risk was around unity. Carrying at least two variant genotypes in CYP2C9 (poor metabolizer), CYP4F2-TT, and VKORC1-AA was associated with a 4.0-fold (95%CI 1.4-11.4) increased risk, while carriers of both CYP4F2-TT and VKORC1-AA had a particularly increased major bleeding risk (hazard ratio 6.7, 95% CI 1.5-29.8) compared with carriers of CC alleles in CYP4F2 and GG in VKORC1. However, the number of major bleeding cases in carriers of multiple variants was few (8 and 5 patients, respectively). CONCLUSIONS: CYP4F2 polymorphism was associated with major bleeding, especially in combination with VKORC1 genetic variants. These variants could be considered to further personalize anticoagulant treatment.

2.
Eur J Hum Genet ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570725

RESUMO

By developing evidence-based pharmacogenetics guidelines to optimize pharmacotherapy, the Dutch Pharmacogenetics Working Group (DPWG) aims to advance the implementation of pharmacogenetics (PGx). This guideline outlines the gene-drug interaction of CYP2C9 and HLA-B with phenytoin, HLA-A and HLA-B with carbamazepine and HLA-B with oxcarbazepine and lamotrigine. A systematic review was performed and pharmacotherapeutic recommendations were developed. For CYP2C9 intermediate and poor metabolisers, the DPWG recommends lowering the daily dose of phenytoin and adjust based on effect and serum concentration after 7-10 days. For HLA-B*15:02 carriers, the risk of severe cutaneous adverse events associated with phenytoin, carbamazepine, oxcarbazepine, and lamotrigine is strongly increased. For carbamazepine, this risk is also increased in HLA-B*15:11 and HLA-A*31:01 carriers. For HLA-B*15:02, HLA-B*15:11 and HLA-A*31:01 positive patients, the DPWG recommends choosing an alternative anti-epileptic drug. If not possible, it is recommended to advise the patient to report any rash while using carbamazepine, lamotrigine, oxcarbazepine or phenytoin immediately. Carbamazepine should not be used in an HLA-B*15:02 positive patient. DPWG considers CYP2C9 genotyping before the start of phenytoin "essential" for toxicity prevention. For patients with an ancestry in which the abovementioned HLA-alleles are prevalent, the DPWG considers HLA-B*15:02 genotyping before the start of carbamazepine, phenytoin, oxcarbazepine, and lamotrigine "beneficial", as well as genotyping for HLA-B*15:11 and HLA-A*31:01 before initiating carbamazepine.

3.
Clin Pharmacol Ther ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38494911

RESUMO

Tamoxifen is widely used in patients with hormone receptor-positive breast cancer. The polymorphic enzyme CYP2D6 is primarily responsible for metabolic activation of tamoxifen, resulting in substantial interindividual variability of plasma concentrations of its most important metabolite, Z-endoxifen. The Z-endoxifen concentration thresholds below which tamoxifen treatment is less efficacious have been proposed but not validated, and prospective trials of individualized tamoxifen treatment to achieve Z-endoxifen concentration thresholds are considered infeasible. Therefore, we aim to validate the association between Z-endoxifen concentration and tamoxifen treatment outcomes, and identify a Z-endoxifen concentration threshold of tamoxifen efficacy, using pharmacometric modeling and simulation. As a first step, the CYP2D6 Endoxifen Percentage Activity Model (CEPAM) cohort was created by pooling data from 28 clinical studies (> 7,000 patients) with measured endoxifen plasma concentrations. After cleaning, data from 6,083 patients were used to develop a nonlinear mixed-effect (NLME) model for tamoxifen and Z-endoxifen pharmacokinetics that includes a conversion factor to allow inclusion of studies that measured total endoxifen but not Z-endoxifen. The final parent-metabolite NLME model confirmed the primary role of CYP2D6, and contributions from body weight, CYP2C9 phenotype, and co-medication with CYP2D6 inhibitors, on Z-endoxifen pharmacokinetics. Future work will use the model to simulate Z-endoxifen concentrations in patients receiving single agent tamoxifen treatment within large prospective clinical trials with long-term survival to identify the Z-endoxifen concentration threshold below which tamoxifen is less efficacious. Identification of this concentration threshold would allow personalized tamoxifen treatment to improve outcomes in patients with hormone receptor-positive breast cancer.

4.
Clin Transl Sci ; 17(2): e13729, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38380703

RESUMO

CYP3A4 activity shows considerable interindividual variability. Although studies indicate 60%-80% is heritable, common single nucleotide variants (SNVs) in CYP3A4 together only explain ~10%. Transcriptional factors, such as the testis-specific Y-encoded-like proteins (TSPYLs) family, have been reported to regulate the expression of CYP enzymes including CYP3A4 in vitro. Here, we investigated the effect of genetic variants in TSPYL on CYP3A4 activity using data from a clinical study and a human liver bank. Five SNVs (rs3828743, rs10223646, rs6909133, rs1204807, and rs1204811) in TSPYL were selected because of a reported effect on CYP3A4 expression in vitro or suggested clinical effect. For the clinical study, whole blood concentrations, clinical data, and DNA were available from 295 kidney transplant recipients participating in the prospective MECANO study. A multivariate pharmacokinetic model adjusted for body weight, steroid treatment, and CYP3A4 genotype was used to assess the effect of the genetic variants on cyclosporine clearance. In multivariate analysis, homozygous carriers of rs3828743 had a 18% lower cyclosporin clearance compared to the wild-type and heterozygous patients (28.72 vs. 35.03 L/h, p = 0.018) indicating a lower CYP3A4 activity and an opposite direction of effect compared to the previously reported increased CYP3A4 expression. To validate, we tested associations between rs3828743 and CYP3A4 mRNA and protein expression as well as enzyme activity with data from a liver bank (n = 150). No association with any of these end points was observed. In conclusion, the totality of evidence is not in support of a significant role for TSPYL SNV rs3828743 in explaining variability in CYP3A4 activity.


Assuntos
Ciclosporina , Transplante de Rim , Masculino , Humanos , Ciclosporina/farmacocinética , Citocromo P-450 CYP3A/genética , Imunossupressores/farmacocinética , Fatores de Transcrição/genética , Transplante de Rim/efeitos adversos , Estudos Prospectivos , Genótipo , Polimorfismo de Nucleotídeo Único
5.
Clin Pharmacol Ther ; 115(6): 1282-1292, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38264789

RESUMO

The discovery of circadian clock genes greatly amplified the study of diurnal variations impacting cancer therapy, transforming it into a rapidly growing field of research. Especially, use of chronomodulated treatment with 5-fluorouracil (5-FU) has gained significance. Studies indicate high interindividual variability (IIV) in diurnal variations in dihydropyrimidine dehydrogenase (DPD) activity - a key enzyme for 5-FU metabolism. However, the influence of individual DPD chronotypes on chronomodulated therapy remains unclear and warrants further investigation. To optimize precision dosing of chronomodulated 5-FU, this study aims to: (i) build physiologically-based pharmacokinetic (PBPK) models for 5-FU, uracil, and their metabolites, (ii) assess the impact of diurnal variation on DPD activity, (iii) estimate individual DPD chronotypes, and (iv) personalize chronomodulated 5-FU infusion rates based on a patient's DPD chronotype. Whole-body PBPK models were developed with PK-Sim(R) and MoBi(R). Sinusoidal functions were used to incorporate variations in enzyme activity and chronomodulated infusion rates as well as to estimate individual DPD chronotypes from DPYD mRNA expression or DPD enzymatic activity. Four whole-body PBPK models for 5-FU, uracil, and their metabolites were established utilizing data from 41 5-FU and 10 publicly available uracil studies. IIV in DPD chronotypes was assessed and personalized chronomodulated administrations were developed to achieve (i) comparable 5-FU peak plasma concentrations, (ii) comparable 5-FU exposure, and (iii) constant 5-FU plasma levels via "noise cancellation" chronomodulated infusion. The developed PBPK models capture the extent of diurnal variations in DPD activity and can help investigate individualized chronomodulated 5-FU therapy through testing alternative personalized dosing strategies.


Assuntos
Antimetabólitos Antineoplásicos , Ritmo Circadiano , Di-Hidrouracila Desidrogenase (NADP) , Fluoruracila , Modelos Biológicos , Neoplasias , Medicina de Precisão , Fluoruracila/farmacocinética , Fluoruracila/administração & dosagem , Humanos , Di-Hidrouracila Desidrogenase (NADP)/metabolismo , Di-Hidrouracila Desidrogenase (NADP)/genética , Antimetabólitos Antineoplásicos/farmacocinética , Antimetabólitos Antineoplásicos/administração & dosagem , Medicina de Precisão/métodos , Neoplasias/tratamento farmacológico , Ritmo Circadiano/fisiologia , Cronofarmacoterapia , Masculino , Feminino , Simulação por Computador , Pessoa de Meia-Idade , Uracila/farmacocinética , Uracila/administração & dosagem , Uracila/análogos & derivados
6.
Eur J Hum Genet ; 32(3): 278-285, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37002327

RESUMO

The Dutch Pharmacogenetics Working Group (DPWG) aims to facilitate pharmacogenetics implementation in clinical practice by developing evidence-based guidelines to optimize pharmacotherapy. A guideline describing the gene-drug interaction between the genes CYP2D6, CYP3A4 and CYP1A2 and antipsychotics is presented here. The DPWG identified gene-drug interactions that require therapy adjustments when respective genotype is known for CYP2D6 with aripiprazole, brexpiprazole, haloperidol, pimozide, risperidone and zuclopenthixol, and for CYP3A4 with quetiapine. Evidence-based dose recommendations were obtained based on a systematic review of published literature. Reduction of the normal dose is recommended for aripiprazole, brexpiprazole, haloperidol, pimozide, risperidone and zuclopenthixol for CYP2D6-predicted PMs, and for pimozide and zuclopenthixol also for CYP2D6 IMs. For CYP2D6 UMs, a dose increase or an alternative drug is recommended for haloperidol and an alternative drug or titration of the dose for risperidone. In addition, in case of no or limited clinical effect, a dose increase is recommended for zuclopenthixol for CYP2D6 UMs. Even though evidence is limited, the DPWG recommends choosing an alternative drug to treat symptoms of depression or a dose reduction for other indications for quetiapine and CYP3A4 PMs. No therapy adjustments are recommended for the other CYP2D6 and CYP3A4 predicted phenotypes. In addition, no action is required for the gene-drug combinations CYP2D6 and clozapine, flupentixol, olanzapine or quetiapine and also not for CYP1A2 and clozapine or olanzapine. For identified gene-drug interactions requiring therapy adjustments, genotyping of CYP2D6 or CYP3A4 prior to treatment should not be considered for all patients, but on an individual patient basis only.


Assuntos
Antipsicóticos , Clozapina , Quinolonas , Tiofenos , Humanos , Antipsicóticos/farmacocinética , Antipsicóticos/farmacologia , Aripiprazol , Clopentixol , Citocromo P-450 CYP1A2 , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP3A/genética , Interações Medicamentosas , Haloperidol , Olanzapina , Farmacogenética , Pimozida , Fumarato de Quetiapina/farmacocinética , Fumarato de Quetiapina/farmacologia , Risperidona/farmacocinética , Risperidona/farmacologia
7.
Cancers (Basel) ; 15(24)2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38136416

RESUMO

AIM: We aimed to investigate associations between IGF1R and INSR single nucleotide variants (SNVs) and clinical response in patients with breast cancer treated with neoadjuvant chemotherapy with or without a fasting mimicking diet (FMD) from the DIRECT trial (NCT02126449), since insulin-like growth factor 1 (IGF1) and the insulin pathway are heavily involved in tumor growth and progression. METHODS: Germline DNA from 113 patients was tested for 17 systematically selected candidate SNVs in IGF1R and INSR with pathological and radiological response. RESULTS: IGF1R variants A > G (rs3743259) and G > A (rs3743258) are associated with worse pathological response compared to reference alleles p = 0.002, OR = 0.42 (95%CI: 0.24; 0.73); p = 0.0016; OR = 0.40 (95%CI: 0.23; 0.70). INSR T > C (rs1051690) may be associated with worse radiological response p = 0.02, OR = 2.92 (95%CI: 1.16; 7.36), although not significant after Bonferroni correction. Exploratory interaction analysis suggests that IGF1R SNVs rs2684787 and rs2654980 interact negatively with the FMD group regarding radiological response p = 0.036, OR = 5.13 (95%CI: 1.12; 23.63); p = 0.024, OR = 5.71 (95%CI: 1.26; 25.85). CONCLUSIONS: The IGF1R variants rs3743259 and rs3743258 are negatively associated with pathological response in this cohort, suggesting potential relevance as a predictive biomarker. Further research is needed to validate these findings and elucidate the underlying mechanisms and interaction with FMD.

8.
Ther Adv Rare Dis ; 4: 26330040231204643, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37955016

RESUMO

Background: Huntington's disease (HD) is a hereditary, neurodegenerative disorder characterized by motor, cognitive, and psychiatric symptoms. Currently, HD can only be managed symptomatically, including a large variety of prescribed drugs. Many HD patients experience negative medication effects (e.g. side effects or non-response). Pharmacogenetic (PGx) studies show how genetic variation affects both medication efficacy and toxicity and holds the potential to improve these outcomes of drug treatment. Primary objective: To classify the effect of the PGx profile of CYP2C19 and CYP2D6 in HD gene expansion carriers on negative medication effects of HD-related medication. Design: Multicenter, observational study with 1-year follow-up. Adult HD gene expansion carriers who use one or more HD-related medications are eligible to participate. Methods and analysis: A detailed overview of medication use, medication efficacy, and side effects is retrospectively and prospectively collected via medication diaries, questionnaires, phone calls, and pharmacy medication verification schemes. PGx analysis on whole blood-extracted DNA is performed with Agena Bioscience VeriDose® Core Panel and long-range polymerase chain reaction copy number variation analysis. Per the study protocol-defined negative medication effects in HD gene expansion carriers with a genotype predicted poor or ultrarapid metabolizer phenotype will be compared with HD gene expansion carriers with a predicted intermediate and normal metabolizer phenotype. Frequencies will be analyzed via χ2 and logistic multivariate regression analysis. In addition, we summarize in this manuscript HD-relevant PGx prescription recommendations to improve drug therapy. Ethics: The original study protocol was approved by the medical research ethics committee Leiden Den Haag Delft on 26 November 2019. Discussion: HD-MED is a low-risk study that will generate personalized PGx results that can immediately be implemented in clinical practice, thus potentially improving pharmacovigilance and patients' quality of life. Registration: This study is registered in the International Clinical Trial Registry Platform under registration number NL8251, URL https://trialsearch.who.int/Trial2.aspx?TrialID=NL8251.

9.
Br J Clin Pharmacol ; 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37926674

RESUMO

Adverse drug reactions (ADRs) account for a large proportion of hospitalizations among adults and are more common in multimorbid patients, worsening clinical outcomes and burdening healthcare resources. Over the past decade, pharmacogenomics has been developed as a practical tool for optimizing treatment outcomes by mitigating the risk of ADRs. Some single-gene reactive tests are already used in clinical practice, including the DPYD test for fluoropyrimidines, which demonstrates how integrating pharmacogenomic data into routine care can improve patient safety in a cost-effective manner. The evolution from reactive single-gene testing to comprehensive pre-emptive genotyping panels holds great potential for refining drug prescribing practices. Several implementation projects have been conducted to test the feasibility of applying different genetic panels in clinical practice. Recently, the results of a large prospective randomized trial in Europe (the PREPARE study by Ubiquitous Pharmacogenomics consortium) have provided the first evidence that prospective application of a pre-emptive pharmacogenomic test panel in clinical practice, in seven European healthcare systems, is feasible and yielded a 30% reduction in the risk of developing clinically relevant toxicities. Nevertheless, some important questions remain unanswered and will hopefully be addressed by future dedicated studies. These issues include the cost-effectiveness of applying a pre-emptive genotyping panel, the role of multiple co-medications, the transferability of currently tested pharmacogenetic guidelines among patients of non-European origin and the impact of rare pharmacogenetic variants that are not detected by currently used genotyping approaches.

10.
J Clin Oncol ; 41(35): 5411-5421, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37639651

RESUMO

PURPOSE: DPYD-guided fluoropyrimidine dosing improves patient safety in carriers of DPYD variant alleles. However, the impact on treatment outcome in these patients is largely unknown. Therefore, progression-free survival (PFS) and overall survival (OS) were compared between DPYD variant carriers treated with a reduced dose and DPYD wild-type controls receiving a full fluoropyrimidine dose in a retrospective matched-pair survival analysis. METHODS: Data from a prospective multicenter study (ClinicalTrials.gov identifier: NCT02324452) in which DPYD variant carriers received a 25% (c.1236G>A and c.2846A>T) or 50% (DPYD*2A and c.1679T>G) reduced dose and data from DPYD variant carriers treated with a similarly reduced dose of fluoropyrimidines identified during routine clinical care were obtained. Each DPYD variant carrier was matched to three DPYD wild-type controls treated with a standard dose. Survival analyses were performed using Kaplan-Meier estimates and Cox regression. RESULTS: In total, 156 DPYD variant carriers and 775 DPYD wild-type controls were available for analysis. Sixty-one c.1236G>A, 25 DPYD*2A, 13 c.2846A>T, and-when pooled-93 DPYD variant carriers could each be matched to three unique DPYD wild-type controls. For pooled DPYD variant carriers, PFS (hazard ratio [HR], 1.23; 95% CI, 1.00 to 1.51; P = .053) and OS (HR, 0.95; 95% CI, 0.75 to 1.51; P = .698) were not negatively affected by DPYD-guided dose individualization. In the subgroup analyses, a shorter PFS (HR, 1.43; 95% CI, 1.10 to 1.86; P = .007) was found in c.1236G>A variant carriers, whereas no differences were found for DPYD*2A and c.2846A>T carriers. CONCLUSION: In this exploratory analysis, DPYD-guided fluoropyrimidine dosing does not negatively affect PFS and OS in pooled DPYD variant carriers. Close monitoring with early dose modifications based on toxicity is recommended, especially for c.1236G>A carriers receiving a reduced starting dose.


Assuntos
Fluoruracila , Neoplasias , Humanos , Capecitabina , Alelos , Estudos Retrospectivos , Estudos Prospectivos , Análise por Pareamento , Di-Hidrouracila Desidrogenase (NADP)/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Genótipo
11.
Pharmacogenomics ; 24(8): 435-439, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37470120

RESUMO

Tweetable abstract Pretreatment UGT1A1 genotyping and a 70% irinotecan dose intensity in poor metabolizers is safe, feasible, cost-effective and essential for safe irinotecan treatment in cancer patients. It is time to update guidelines to swiftly enable the implementation of UGT1A1 genotype-guided irinotecan dosing in routine oncology care.


Assuntos
Camptotecina , Neoplasias , Humanos , Irinotecano/efeitos adversos , Camptotecina/efeitos adversos , Segurança do Paciente , Genótipo , Neoplasias/tratamento farmacológico , Glucuronosiltransferase/genética
12.
Hum Genomics ; 17(1): 51, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37287029

RESUMO

BACKGROUND: Cardiovascular diseases and especially Acute Coronary Syndrome (ACS) constitute a major health issue impacting millions of patients worldwide. Being a leading cause of death and hospital admissions in many European countries including Spain, it accounts for enormous amounts of healthcare expenditures for its management. Clopidogrel is one of the oldest antiplatelet medications used as standard of care in ACS. METHODS: In this study, we performed an economic evaluation study to estimate whether a genome-guided clopidogrel treatment is cost-effective compared to conventional one in a large cohort of 243 individuals of Spanish origin suffering from ACS and treated with clopidogrel. Data were derived from the U-PGx PREPARE clinical trial. Effectiveness was measured as survival of individuals while study data on safety and efficacy, as well as on resource utilization associated with each adverse drug reaction were used to measure costs to treat these adverse drug reactions. A generalized linear regression model was used to estimate cost differences for both study groups. RESULTS: Based on our findings, PGx-guided treatment group is cost-effective. PGx-guided treatment demonstrated to have 50% less hospital admissions, reduced emergency visits and almost 13% less ADRs compared to the non-PGx approach with mean QALY 1.07 (95% CI, 1.04-1.10) versus 1.06 (95% CI, 1.03-1.09) for the control group, while life years for both groups were 1.24 (95% CI, 1.20-1.26) and 1.23 (95% CI, 1.19-1.26), respectively. The mean total cost of PGx-guided treatment was 50% less expensive than conventional therapy with clopidogrel [€883 (95% UI, €316-€1582), compared to €1,755 (95% UI, €765-€2949)]. CONCLUSION: These findings suggest that PGx-guided clopidogrel treatment represents a cost-effective option for patients suffering from ACS in the Spanish healthcare setting.


Assuntos
Síndrome Coronariana Aguda , Farmacogenética , Humanos , Clopidogrel/uso terapêutico , Análise Custo-Benefício , Síndrome Coronariana Aguda/tratamento farmacológico , Síndrome Coronariana Aguda/genética , Inibidores da Agregação Plaquetária/efeitos adversos
14.
Br J Clin Pharmacol ; 89(9): 2920-2925, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37337890

RESUMO

AIMS: There are limited pharmacokinetic data on the use of irinotecan in patients with reduced glomerular filtration rate (GFR) and no haemodialysis. In this case report, we present 2 cases and review the current literature. METHODS: The dose of irinotecan in both patients was reduced pre-emptively due to reduced GFR. The first patient had her irinotecan dose reduced to 50%, but was nevertheless admitted to hospital because of irinotecan-induced toxicity, including gastrointestinal toxicity and neutropenic fever. The dose was reduced further to 40% for the second cycle; however, the patient was again admitted to the hospital, and irinotecan was stopped indefinitely. The second patient also had his irinotecan dose reduced to 50% and was admitted to the emergency department for gastrointestinal toxicity after the first cycle. However, irinotecan could be administered in the same dose in later cycles. RESULTS: The area under the curve to infinity of irinotecan and SN-38 in the first patient were comparable to those of an individual receiving 100% dose intensity. The area under the curve to infinity of irinotecan and SN-38 in patient 2 in both cycles were slightly less than reference values. Furthermore, clearance values of irinotecan and SN-38 in our patients were comparable to those without renal impairment. CONCLUSION: Our case report suggests that reduced GFR may not significantly affect the clearance of irinotecan and SN-38, but can still result in clinical toxicity. Reduced initial dosing seems indicated in this patient population. Further research is needed to fully understand the relationship between reduced GFR, pharmacokinetics, and toxicity of irinotecan and SN-38.

15.
Front Pharmacol ; 14: 1201906, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37361233

RESUMO

Introduction: Pharmacogenetics-informed drug prescribing is increasingly applied in clinical practice. Typically, drug metabolizing phenotypes are determined based on genetic test results, whereupon dosage or drugs are adjusted. Drug-drug-interactions (DDIs) caused by concomitant medication can however cause mismatches between predicted and observed phenotypes (phenoconversion). Here we investigated the impact of CYP2C19 genotype on the outcome of CYP2C19-dependent DDIs in human liver microsomes. Methods: Liver samples from 40 patients were included, and genotyped for CYP2C19*2, *3 and *17 variants. S-mephenytoin metabolism in microsomal fractions was used as proxy for CYP2C19 activity, and concordance between genotype-predicted and observed CYP2C19 phenotype was examined. Individual microsomes were subsequently co-exposed to fluvoxamine, voriconazole, omeprazole or pantoprazole to simulate DDIs. Results: Maximal CYP2C19 activity (Vmax) in genotype-predicted intermediate metabolizers (IMs; *1/*2 or *2/*17), rapid metabolizers (RMs; *1/*17) and ultrarapid metabolizers (UMs; *17/*17) was not different from Vmax of predicted normal metabolizers (NMs; *1/*1). Conversely, CYP2C19*2/*2 genotyped-donors exhibited Vmax rates ∼9% of NMs, confirming the genotype-predicted poor metabolizer (PM) phenotype. Categorizing CYP2C19 activity, we found a 40% concordance between genetically-predicted CYP2C19 phenotypes and measured phenotypes, indicating substantial phenoconversion. Eight patients (20%) exhibited CYP2C19 IM/PM phenotypes that were not predicted by their CYP2C19 genotype, of which six could be linked to the presence of diabetes or liver disease. In subsequent DDI experiments, CYP2C19 activity was inhibited by omeprazole (-37% ± 8%), voriconazole (-59% ± 4%) and fluvoxamine (-85% ± 2%), but not by pantoprazole (-2 ± 4%). The strength of CYP2C19 inhibitors remained unaffected by CYP2C19 genotype, as similar percental declines in CYP2C19 activity and comparable metabolism-dependent inhibitory constants (Kinact/KI) of omeprazole were observed between CYP2C19 genotypes. However, the consequences of CYP2C19 inhibitor-mediated phenoconversion were different between CYP2C19 genotypes. In example, voriconazole converted 50% of *1/*1 donors to a IM/PM phenotype, but only 14% of *1/*17 donors. Fluvoxamine converted all donors to phenotypic IMs/PMs, but *1/*17 (14%) were less likely to become PMs than *1/*1 (50%) or *1/*2 and *2/*17 (57%). Conclusion: This study suggests that the differential outcome of CYP2C19-mediated DDIs between genotypes are primarily dictated by basal CYP2C19 activity, that may in part be predicted by CYP2C19 genotype but likely also depends on disease-related factors.

16.
CPT Pharmacometrics Syst Pharmacol ; 12(8): 1143-1156, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37165978

RESUMO

The antiarrhythmic agent quinidine is a potent inhibitor of cytochrome P450 (CYP) 2D6 and P-glycoprotein (P-gp) and is therefore recommended for use in clinical drug-drug interaction (DDI) studies. However, as quinidine is also a substrate of CYP3A4 and P-gp, it is susceptible to DDIs involving these proteins. Physiologically-based pharmacokinetic (PBPK) modeling can help to mechanistically assess the absorption, distribution, metabolism, and excretion processes of a drug and has proven its usefulness in predicting even complex interaction scenarios. The objectives of the presented work were to develop a PBPK model of quinidine and to integrate the model into a comprehensive drug-drug(-gene) interaction (DD(G)I) network with a diverse set of CYP3A4 and P-gp perpetrators as well as CYP2D6 and P-gp victims. The quinidine parent-metabolite model including 3-hydroxyquinidine was developed using pharmacokinetic profiles from clinical studies after intravenous and oral administration covering a broad dosing range (0.1-600 mg). The model covers efflux transport via P-gp and metabolic transformation to either 3-hydroxyquinidine or unspecified metabolites via CYP3A4. The 3-hydroxyquinidine model includes further metabolism by CYP3A4 as well as an unspecific hepatic clearance. Model performance was assessed graphically and quantitatively with greater than 90% of predicted pharmacokinetic parameters within two-fold of corresponding observed values. The model was successfully used to simulate various DD(G)I scenarios with greater than 90% of predicted DD(G)I pharmacokinetic parameter ratios within two-fold prediction success limits. The presented network will be provided to the research community and can be extended to include further perpetrators, victims, and targets, to support investigations of DD(G)Is.


Assuntos
Citocromo P-450 CYP2D6 , Citocromo P-450 CYP3A , Humanos , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Quinidina , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Interações Medicamentosas , Modelos Biológicos , Inibidores do Citocromo P-450 CYP3A/farmacocinética
17.
Pharmacogenomics ; 24(5): 243-246, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37014361

RESUMO

On 8-9 November 2022, the European Society of Pharmacogenomics and Personalised Therapy organized its sixth biennial congress, in Belgrade, Serbia (congress website: www.sspt.rs). The congress aimed to address the current status and future perspectives of pharmacogenomics, share latest knowledge in the field of precision medicine and showcase the implementation of clinical applications in pharmacogenomics/pharmacogenetics. The 2 day congress consisted of 17 lectures given by key-opinion leaders and included a poster session plus discussions. The meeting was a great success by generating an informal environment and enabling the exchange of information between 162 participants from 16 different countries.


Assuntos
Farmacogenética , Medicina de Precisão , Humanos
18.
Genes (Basel) ; 14(3)2023 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-36980851

RESUMO

Tailoring antiplatelet therapy based on CYP2C19 pharmacogenetic (PGx) testing can improve cardiovascular outcomes and potentially reduce healthcare costs in patients on a P2Y12-inhibitor regime with prasugrel or ticagrelor. However, ubiquitous adoption-particularly in an outpatient setting-remains limited. We conducted a proof-of-concept study to evaluate the feasibility of CYP2C19-guided de-escalation of prasugrel/ticagrelor to clopidogrel through point-of-care (POC) PGx testing in the community pharmacy. Multiple feasibility outcomes were assessed. Overall, 144 patients underwent CYP2C19 PGx testing in 27 community pharmacies. Successful test results were obtained in 142 patients (98.6%). De-escalation to clopidogrel occurred in 19 patients (20%) out of 95 (67%) eligible for therapy de-escalation, which was mainly due to PGx testing not being included in cardiology guidelines. Out of the 119 patients (84%) and 14 pharmacists (100%) surveyed, 109 patients (92%) found the community pharmacy a suitable location for PGx testing, and the majority of pharmacists (86%) thought it has added value. Net costs due to PGx testing were estimated at €43 per patient, which could be reduced by earlier testing and could turn into savings if de-escalation would double to 40%. Although the observed de-escalation rate was low, POC CYP2C19-guided de-escalation to clopidogrel appears feasible in a community pharmacy setting.


Assuntos
Síndrome Coronariana Aguda , Citocromo P-450 CYP2C19 , Inibidores da Agregação Plaquetária , Antagonistas do Receptor Purinérgico P2Y , Humanos , Síndrome Coronariana Aguda/tratamento farmacológico , Clopidogrel/uso terapêutico , Citocromo P-450 CYP2C19/genética , Estudos de Viabilidade , Genótipo , Farmacêuticos , Inibidores da Agregação Plaquetária/uso terapêutico , Sistemas Automatizados de Assistência Junto ao Leito , Cloridrato de Prasugrel/uso terapêutico , Ticagrelor/uso terapêutico , Antagonistas do Receptor Purinérgico P2Y/uso terapêutico
19.
Clin Pharmacol Ther ; 113(5): 1125-1131, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36762628

RESUMO

Personalized medicine is currently hampered by the lack of flexible drug formulations. Especially for pediatric patients, manual compounding of personalized drug formulations by pharmacists is required. Three-Dimensional (3D) printing of medicines, which enables small-scale manufacturing at the point-of-care, can fulfill this unmet clinical need. This study investigates the feasibility of developing a 3D-printed tablet formulation at the point-of-care which complies to quality requirements for clinical practice, including bioequivalence. Development, manufacturing, and quality control of the 3D-printed tablets was performed at the manufacturing facility and laboratory of the department of Clinical Pharmacy and Toxicology at Leiden University Medical Center. Sildenafil was used as a model drug for the tablet formulation. Along with the 3D-printed tablets a randomized, an open-label, 2-period, crossover, single-dose clinical trial to assess bioequivalence was performed in healthy adults. Bioequivalence was established if areas under the plasma concentration curve from administration to the time of the last quantifiable concentration (AUC0-t ) and maximum plasma concentration (Cmax ) ratios were within the limits of 80.00-125.00%. The manufacturing process provided reproducible 3D-printed tablets that adhered to quality control requirements and were consequently used in the clinical trial. The clinical trial was conducted in 12 healthy volunteers. The 90% confidence intervals (CIs) of both AUC0-t and Cmax ratios were within bioequivalence limits (AUC0-t 90% CI: 87.28-104.14; Cmax 90% CI: 80.23-109.58). For the first time, we demonstrate the development of a 3D-printed tablet formulation at the point-of-care that is bioequivalent to its marketed originator. The 3D printing of personalized formulations is a disruptive technology for compounding, bridging the gap toward personalized medicine.


Assuntos
Sistemas Automatizados de Assistência Junto ao Leito , Medicina de Precisão , Adulto , Humanos , Criança , Equivalência Terapêutica , Comprimidos , Estudos Cross-Over , Área Sob a Curva , Voluntários Saudáveis
20.
Genes (Basel) ; 14(2)2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36833383

RESUMO

Pharmacogenomic testing is a method to prevent adverse drug reactions. Pharmacogenomics could be relevant to optimize statin treatment, by identifying patients at high risk for adverse drug reactions. We aim to investigate the clinical validity and utility of pre-emptive pharmacogenomics screening in primary care, with SLCO1B1 c.521T>C as a risk factor for statin-induced adverse drug reactions. The focus was on changes in therapy as a proxy for adverse drug reactions observed in statin-users in a population-based Dutch cohort. In total, 1136 statin users were retrospectively genotyped for the SLCO1B1 c.521T>C polymorphism (rs4149056) and information on their statin dispensing was evaluated as cross-sectional research. Approximately half of the included participants discontinued or switched their statin treatment within three years. In our analyses, we could not confirm an association between the SLCO1B1 c.521T>C genotype and any change in statin therapy or arriving at a stable dose sooner in primary care. To be able to evaluate the predictive values of SLCO1B1 c.521T>C genotype on adverse drug reactions from statins, prospective data collection of actual adverse drug reactions and reasons to change statin treatment should be facilitated.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Estudos Transversais , Estudos Retrospectivos , Polimorfismo de Nucleotídeo Único , Transportador 1 de Ânion Orgânico Específico do Fígado/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA