RESUMO
Biofilm formation on medical implants such as catheters is a major issue which needs to be addressed as it leads to severe health care associated infections. This study explored the design and synthesis of a polydopamine-lipopeptide based antimicrobial coating. The coating was used to modify the surface of Ultrathane Catheters. The lipopeptide SL1.15 with an N-terminal cysteine was covalently conjugated to the polydopamine modified catheters via a Michael addition reaction between the thiol moiety in the peptide and the aromatic ring in the polydopamine layer. The immobilization of the peptide on the polydopamine coated catheters was confirmed using water contact angle, X-ray photoelectron spectroscopy, atomic force microscopy, and scanning electron microscopy (SEM). The antimicrobial activity of the coated catheters investigated using drug resistant and clinical strains of Gram-positive (MRSA and S. aureus) and Gram-negative (E. coli, A. baumannii, and P. aeruginosa) bacteria revealed that lipopeptide immobilization inhibited >90% bacterial adhesion to the catheter surface. Additionally, biofilm assays against MRSA and E. coli revealed that the lipopeptide immobilized catheters inhibited >85% bacterial growth after 1 week incubation. Finally, the cytotoxicity profile of the catheters using the human dermal fibroblast, and the human embryonic kidney cell lines demonstrated that the polydopamine-lipopeptide coating was not toxic after 72 h incubation.
RESUMO
Multidrug-resistant fungal pathogens and antifungal drug toxicity have challenged our current ability to fight fungal infections. Therefore, there is a strong global demand for novel antifungal molecules with the distinct mode of action and specificity to service the medical and agricultural sectors. Polyenes are a class of antifungal drugs with the broadest spectrum of activity among the current antifungal drugs. Epipyrone A, a water-soluble antifungal molecule with a unique, linear polyene structure, was isolated from the fungus Epiccocum nigrum. Since small changes in a compound structure can significantly alter its cell target and mode of action, we present here a study on the antifungal mode of action of the disalt of epipyrone A (DEA) using chemical-genetic profiling, fluorescence microscopy, and metabolomics. Our results suggest the disruption of sphingolipid/fatty acid biosynthesis to be the primary mode of action of DEA, followed by the intracellular accumulation of toxic phenolic compounds, in particular p-toluic acid (4-methylbenzoic acid). Although membrane ergosterol is known to be the main cell target for polyene antifungal drugs, we found little evidence to support that is the case for DEA. Sphingolipids, on the other hand, are known for their important roles in fungal cell physiology, and their biosynthesis has been recognized as a potential fungal-specific cell target for the development of new antifungal drugs.
RESUMO
[This corrects the article DOI: 10.1371/journal.pone.0273088.].
RESUMO
Di-branched and tetra-branched versions of a previously reported analogue of the lipopeptide battacin were successfully synthesised using thiol-maleimide click and 1, 2, 3-triazole click chemistry. Antimicrobial studies against drug resistant clinical isolates of Escherichia coli (ESBL E. coli Ctx-M14), Pseudomonas aeruginosa (P. aeruginosa Q502), and Methicillin resistant Staphylococcus aureus (MRSA ATCC 33593), as well as clinically isolated Acinetobacter baumannii (A. baumannii ATCC 19606), and P. aeruginosa (ATCC 27853), revealed that the dendrimeric peptides have antimicrobial activity in the low micromolar range (0.5 -- 4 µM) which was 10 times more potent than the monomer peptides. Under high salt concentrations (150 mM NaCl, 2 mM MgCl2, and 2.5 mM CaCl2) the di-branched lipopeptides retained their antimicrobial activity while the monomer peptides were not active (>100 µM). The di-branched triazole click lipopeptide, Peptide 12, was membrane lytic, showed faster killing kinetics, and exhibited antibiofilm activity against A. baumannii and MRSA and eradicated > 85 % preformed biofilms at low micromolar concentrations. The di-branched analogues were > 30-fold potent than the monomers against Candida albicans. Peptide 12 was not haemolytic (HC10 = 932.12 µM) and showed up to 40-fold higher selectivity against bacteria and fungi than the monomer peptide. Peptide 12 exhibited strong proteolytic stability (>80 % not degraded) in rat serum over 24 h whereas > 95 % of the thiol-maleimide analogue (Peptide 10) was degraded. The tetra-branched peptides showed comparable antibacterial potency to the di-branched analogues. These findings indicate that dual branching using triazole click chemistry is a promising strategy to improve the antimicrobial activity and proteolytic stability of battacin based lipopeptides. The information gathered can be used to build effective antimicrobial dendrimeric peptides as new peptide antibiotics.
Assuntos
Antibacterianos , Dendrímeros , Lipopeptídeos , Testes de Sensibilidade Microbiana , Humanos , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Química Click , Dendrímeros/química , Dendrímeros/farmacologia , Dendrímeros/síntese química , Relação Dose-Resposta a Droga , Escherichia coli/efeitos dos fármacos , Lipopeptídeos/farmacologia , Lipopeptídeos/síntese química , Lipopeptídeos/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Estrutura Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Relação Estrutura-Atividade , Peptídeos/química , Peptídeos/farmacologiaRESUMO
The potential application of colloidal polyaniline (PANI) as an antimicrobial is limited by challenges related to solubility in common organic solvents, scalability, and antimicrobial potency. To address these limitations, we introduced a functionalized PANI (fPANI) with carboxyl groups through the polymerisation of aniline and 3-aminobenzoic acid in a 1:1 molar ratio. fPANI is more soluble than PANI which was determined using a qualitative study. We further enhanced the solubility and antimicrobial activity of fPANI by incorporating Ag nanoparticles onto the synthesized fPANI colloid via direct addition of 10â¯mM AgNO3. The improved solubility can be attributed to an approximately 3-fold reduction in size of particles. Mean particle sizes are measured at 1322â¯nm for fPANI colloid and 473â¯nm for fPANI-Ag colloid, showing a high dispersion and deagglomeration effect from Ag nanoparticles. Antimicrobial tests demonstrated that fPANI-Ag colloids exhibited superior potency against Gram-positive Staphylococcus aureus, Gram-negative Escherichia coli, and Bacteriophage PhiX 174 when compared to fPANI alone. The minimum bactericidal concentration (MBC) and minimum virucidal concentration (MVC) values were halved for fPANI-Ag compared to fPANI colloid and attributed to the combination of Ag nanoparticles with the fPANI polymer. The antimicrobial fPANI-Ag colloid presented in this study shows promising results, and further exploration into scale-up can be pursued for potential biomedical applications.
Assuntos
Compostos de Anilina , Coloides , Escherichia coli , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Prata , Staphylococcus aureus , Compostos de Anilina/química , Compostos de Anilina/farmacologia , Compostos de Anilina/síntese química , Coloides/química , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Prata/química , Prata/farmacologia , Nanopartículas Metálicas/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , SolubilidadeRESUMO
Essential oils (EOs) and plant extracts have demonstrated inhibitory activity against a wide range of pathogenic bacteria. In this study, the chemical composition of manuka, kanuka, peppermint, thyme, lavender, and feijoa leaf and peel EOs and feijoa peel and leaf extracts were analyzed, and their antimicrobial activity against Escherichia coli, Salmonella enterica Typhimurium, Staphylococcus aureus, Bacillus cereus, and Listeria monocytogenes were determined. The results showed that the major compounds varied among different EOs and extracts, with menthol in peppermint EO, thymol and carvacrol in thyme EO, linalool in lavender EO, ß-caryophyllene in feijoa EO, and flavones in feijoa extract being the most prevalent. The study found that while EOs/extracts had antimicrobial activity alone, no individual EO/extract was highly effective against all tested species. Therefore, their combinations were tested to identify those that could broaden the spectrum of activity and act synergistically. The checkerboard method was applied to assess the possible synergism between the paired combinations of EOs/extract. The peppermint/thyme, peppermint/lavender, and peppermint/feijoa peel extract combinations exhibited a synergistic effect against E. coli and L. monocytogenes, with the peppermint/thyme and peppermint/feijoa peel extract combinations being the most effective against all five pathogens. Time-to-kill kinetics assays demonstrated that peppermint/thyme and peppermint/feijoa peel extract combinations achieved complete eradication of E. coli within 10-30 min and L. monocytogenes within 4-6 h. This study provides a promising approach to developing a natural alternative for food preservation using synergistic combinations of EOs/extracts, which could potentially reduce the required dosage and broaden their application in food products as natural preservatives.
RESUMO
AIMS: To assess the efficacy of two commercially available viability dyes, 5-cyano-2,3-di-(p-tolyl)tetrazolium chloride (CTC) and 5(6)-carboxyfluorescein diacetate (CFDA), in reporting on viable cell concentration and species using an all-fibre fluorometer. METHODS AND RESULTS: Four bacterial species (two Gram-positive and two Gram-negative) commonly associated with food poisoning or food spoilage (Escherichia coli, Salmonella enterica, Staphylococcus aureus, and Bacillus cereus) were stained with CTC or CFDA and the fibre fluorometer was used to collect full fluorescence emission spectra. A good correlation between concentration and fluorescence intensity was found for Gram-negative bacteria between 107 and 108 colony-forming units (CFU) ml-1. There was no correlation with concentration for Gram-positive bacteria; however, the information in the CTC and CFDA spectra shows the potential to distinguish Gram-negative cells from Gram-positive cells, although it may simply reflect the overall bacterial metabolic activity under staining conditions from this study. CONCLUSIONS: The limit of detection (LoD) is too high in the dip-probe approach for analysis; however, the development of an approach measuring the fluorescence of single cells may improve this limitation. The development of new bacteria-specific fluorogenic dyes may also address this limitation. The ability to differentiate bacteria using these dyes may add value to measurements made to enumerate bacteria using CTC and CFDA.
Assuntos
Cloretos , Fluoresceínas , Corantes Fluorescentes , Espectrometria de Fluorescência , Bacillus cereus , Escherichia coliRESUMO
New antimicrobials are urgently needed to combat the rising global health concern of antibiotic resistance. Antimicrobial peptides (AMPs) are one of the leading candidates as new antimicrobials since they target bacterial membranes and are therefore less prone to bacterial resistance. However, poor enzymatic stability, high production costs, and toxicity are drawbacks that limit their clinical use. Conjugation of AMPs to gold nanoparticles (NPs) may help to improve enzymatic stability and, thus, their overall antimicrobial efficiency. We did a one-pot synthesis of size-controlled (10 nm) gold NPs selectively conjugated to lipopeptides and determined their antibacterial activity. The conjugates exhibited potent (0.13-1.25 µM) antimicrobial activity against clinical isolates, including Gram-positive methicillin-resistant Staphylococcus aureus (S. aureus) ATCC33593, Gram-negative Escherichia coli (E. coli) CTX-M-14, multidrug-resistant Pseudomonas aeruginosa LESB58 and Acinetobacter baumannii ATCC19606, and showed promising activity (90% inhibition of initial biofilms and 80% reduction of preformed biofilms) against S. aureus and E. coli DH5α biofilms at low micromolar concentrations. The conjugates were stable in rat serum and not toxic to representative mammalian cell lines in vitro (≤64 µM) and in vivo (≤100 µM).
Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Ratos , Animais , Staphylococcus aureus , Ouro/química , Peptídeos Antimicrobianos , Escherichia coli , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química , Biofilmes , MamíferosRESUMO
With the global increase in food exchange, rapid identification and enumeration of bacteria has become crucial for protecting consumers from bacterial contamination. Efficient analysis requires the separation of target particles (e.g., bacterial cells) from food and/or sampling matrices to prevent matrix interference with the detection and analysis of target cells. However, studies on the separation of bacteria-sized particles and defined particles, such as bacterial cells, from heterogeneous debris, such as meat swab suspensions, are limited. In this study, we explore the use of passive-based inertial microfluidics to separate bacterial cells from debris, such as fascia, muscle tissues, and cotton fibers, extracted from ground meat and meat swabs-a novel approach demonstrated for the first time. Our objective is to evaluate the recovery efficiency of bacterial cells from large debris obtained from ground meat and meat swab suspensions using a spiral microfluidic device. In this study, we establish the optimal flow rates and Dean number for continuous bacterial cell and debris separation and a methodology to determine the percentage of debris removed from the sample suspension. Our findings demonstrate an average recovery efficiency of â¼80% for bacterial cells separated from debris in meat swab suspensions, while the average recovery efficiency from ground beef suspensions was â¼70%. Furthermore, approximately 50% of the debris in the ground meat suspension were separated from bacterial cells.
RESUMO
The first objective of this study was to establish clinically relevant techniques for cardiac echocardiography in nonanesthetized Galapagos (Chelonoidis nigra complex) and Aldabra (Aldabrachelys gigantea) tortoises. A second objective was to establish guidelines for determining normal echocardiographic anatomy and function in both species. Select echocardiographic reference values were defined for 17 healthy Galapagos tortoises and 27 healthy Aldabra tortoises. Tortoises were either placed in ventral recumbency on an elevated surface or allowed to stand in a natural position by using food distraction. An ultrasound probe was applied in the left or right cervicobrachial window and was positioned in two long axis views to evaluate the three chambers of the heart and the associated great vessels, the presence of pericardial effusion, the atrioventricular inflow velocities, and pulmonic and aortic outflow velocities. The heart rate was 28 ± 12 (median ± SD) bpm, and the ejection fraction was 60.5 ± 10%. Thirty-four of 44 tortoises had identifiable physiologic pericardial effusion. All tortoises were successfully imaged using the techniques described, with consistent identification of cardiac structure and assessment of function. This study provides echocardiographic reference intervals for the clinical evaluation of suspected cardiac disease in captive-managed Galapagos and Aldabra tortoises.
Assuntos
Derrame Pericárdico , Tartarugas , Animais , Tartarugas/fisiologia , Derrame Pericárdico/veterinária , Ecocardiografia/veterinária , UltrassonografiaRESUMO
With the emergence of deadly viral and bacterial infections, preventing the spread of microorganisms on surfaces has gained ever-increasing importance. This study investigates the potential of solid-state supercapacitors as antibacterial and antiviral devices. We developed a low-cost and flexible carbon cloth supercapacitor (CCSC) with highly efficient antibacterial and antiviral surface properties. The CCSC comprised two parallel layers of carbon cloth (CC) electrodes assembled in a symmetric, electrical double-layer supercapacitor structure that can be charged at low potentials between 1 to 2 V. The optimized CCSC exhibited a capacitance of 4.15 ± 0.3 mF cm-2 at a scan rate of 100 mV s-1, high-rate capability (83% retention of capacitance at 100 mV s-1 compared to its value at 5 mV s-1), and excellent electrochemical stability (97% retention of the initial capacitance after 1000 cycles). Moreover, the CCSC demonstrated outstanding flexibility and retained its full capacitance even when bent at high angles, making it suitable for wearable or flexible devices. Using its stored electrical charge, the charged CCSC disinfects bacteria effectively and neutralizes viruses upon surface contact with the positive and negative electrodes. The charged CCSC device yielded a 6-log CFU reduction of Escherichia coli bacterial inocula and a 5-log PFU reduction of HSV-1 herpes virus. Antibacterial and antiviral carbon cloth supercapacitors represent a promising platform technology for various applications, including electronic textiles and electronic skins, health monitoring or motion sensors, wound dressings, personal protective equipment (e.g., masks) and air filtration systems.
Assuntos
Antibacterianos , Antivirais , Antivirais/farmacologia , Fenômenos Físicos , Movimento (Física) , Antibacterianos/farmacologia , Carbono , Escherichia coliRESUMO
Surgical site infections (SSIs) are mainly caused by Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis) biofilms. Biofilms are aggregates of bacteria embedded in a self-produced matrix that offers protection against antibiotics and promotes the spread of antibiotic-resistance in bacteria. Consequently, antibiotic treatment frequently fails, resulting in the need for alternative therapies. The present study describes the in vitro efficacy of the Cu(DDC)2 complex (2:1 M ratio of diethyldithiocarbamate (DDC-) and Cu2+) with additional Cu2+ against S. aureus and S. epidermidis biofilms in models mimicking SSIs and in vitro antibacterial activity of a liposomal Cu(DDC)2 + Cu2+ formulation. The in vitro activity on S. aureus and S. epidermidis biofilms grown on two hernia mesh materials and in a wound model was determined by colony forming unit (CFU) counting. Cu2+-liposomes and Cu(DDC)2-liposomes were prepared, and their antibacterial activity was assessed in vitro using the alamarBlue assay and CFU counting and in vivo using a Galleria mellonella infection model. The combination of 35 µM DDC- and 128 µM Cu2+ inhibited S. aureus and S. epidermidis biofilms on meshes and in a wound infection model. Cu(DDC)2-liposomes + free Cu2+ displayed similar antibiofilm activity to free Cu(DDC)2 + Cu2+, and significantly increased the survival of S. epidermidis-infected larvae. Whilst Cu(DDC)2 + Cu2+ showed substantial antibiofilm activity in vitro against clinically relevant biofilms, its application in mammalian in vivo models is limited by solubility. The liposomal Cu(DDC)2 + Cu2+ formulation showed antibiofilm activity in vitro and antibacterial activity and low toxicity in G. mellonella, making it a suitable water-soluble formulation for future application on infected wounds in animal trials.
RESUMO
OBJECTIVE: To evaluate the effect of a prophylactic lidocaine constant rate infusion (CRI) on the incidence and malignancy of catheter-induced ventricular ectopic complexes (VECs) during balloon valvuloplasty for management of pulmonic stenosis in dogs. STUDY DESIGN: Single-centre, prospective, randomized study. ANIMALS: Client-owned dogs (n = 70) with pulmonic stenosis. METHODS: Dogs were randomly assigned to one of two anaesthetic protocols: administration of lidocaine 2 mg kg-1 bolus followed by a CRI (50 µg kg-1 minute-1; group LD) or a saline placebo (group SL) during balloon valvuloplasty. All dogs were premedicated with methadone (0.3 mg kg-1) intramuscularly and a digital three-lead Holter monitor was applied. Anaesthetic co-induction was performed with administration of alfaxalone (2 mg kg-1) and diazepam (0.4 mg kg-1), and anaesthesia was maintained with isoflurane vaporised in 100% oxygen. CRIs were started on positioning of the dog in theatre and discontinued as the last vascular catheter was removed from the heart. All dogs recovered well and were discharged 24 hours postoperatively. Blinded Holter analysis was performed by an external veterinary cardiologist using commercially available dedicated analysis software; p < 0.05. RESULTS: Of the 70 dogs enrolled in the study, 61 were included in the final analysis: 31 in group LD and 30 in group SL. There was no significant difference between sinus beats (p = 0.227) or VECs (p = 0.519) between groups. In group LD, 19/31 (61.3%) dogs had a maximum ventricular rate ≥250 units and 20/30 (66.7%) dogs in group SL (p = 0.791). CONCLUSION AND CLINICAL RELEVANCE: In this study, the use of a prophylactic lidocaine bolus followed by CRI in dogs undergoing balloon valvuloplasty for management of pulmonic stenosis did not significantly decrease the incidence nor the malignancy of VECs during right heart catheterization compared with a saline CRI.
Assuntos
Valvuloplastia com Balão , Doenças do Cão , Estenose da Valva Pulmonar , Cães , Animais , Lidocaína , Valvuloplastia com Balão/veterinária , Estudos Prospectivos , Estenose da Valva Pulmonar/cirurgia , Estenose da Valva Pulmonar/veterinária , Diazepam , Doenças do Cão/cirurgiaRESUMO
Prosthetic joint infection (PJI) is a rare but devastating complication of joint arthroplasty. Biofilm formation around the prosthesis confers tolerance to antibiotics so that treatment is challenging. Most animal models of PJI use planktonic bacteria to establish the infection which fails to reproduce the pathology of chronic infection. We aimed to establish a rat model of Staphylococcus aureus PJI in male Sprague-Dawley rats using biofilm inocula and demonstrate its tolerance to frontline antibiotics. Pilot studies indicated that infection could be introduced to the knee joint by a biofilm-coated pin but that handling the prosthetic without disturbing the biofilm was difficult. We, therefore, developed a pin with a slotted end and used a miniature-biofilm reactor to develop mature biofilm in this niche. These biofilm-laden pins consistently produced infection of the bone and joint space. Treatment with high dose cefazolin, 250 mg/kg, starting the day of surgery reduced or cleared pin-adherent bioburden within 7 days, however when escalation from 25 to 250 mg/kg cefazolin treatment was delayed for 48 h, rats were unable to clear the infection. To track infections, we used bioluminescent bacteria, however, the bioluminescent signal did not accurately track the degree of infection in the bone and joint space as the signal did not penetrate the bone. In conclusion, we demonstrate that using a custom prosthetic pin, we can generate biofilm in a specific niche using a novel bioreactor setup and initiate a rat PJI that rapidly develops tolerance to supra-clinical doses of cefazolin.
Assuntos
Artrite Infecciosa , Infecções Relacionadas à Prótese , Infecções Estafilocócicas , Masculino , Ratos , Animais , Cefazolina , Infecções Relacionadas à Prótese/microbiologia , Ratos Sprague-Dawley , Biofilmes , Antibacterianos/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/complicações , Próteses e Implantes/efeitos adversos , Articulação do Joelho , Artrite Infecciosa/tratamento farmacológicoRESUMO
Background and study aims Bile duct stones (BDS) represent approximately 50â% of the requirement for endoscopic retrograde cholangiopancreatography (ERCP) within most services. Significant variation in outcome rates for BDS clearance at ERCP has been reported, and endoscopy societies have set standards for expected clearance rates. The aim of this study was to analyze procedure outcomes across a national service. Patients and methods Using verified hospital episode statistics (HES) data for the National Health Service (NHS) in England, we analyzed all patients having first ERCPs for BDS from 2015 to 2017, and followed these patients for at least 2 years. Results In total 37,468 patients underwent a first ERCP for BDS, with 69.8â% undergoing only one procedure. This figure of less than 70â% of BDS cleared at first ERCP is below the Key Performance Indicators as set by the British Society of Gastroenterology (>â75â%) and the European Society of Gastrointestinal Endoscopy (>â90â%). Of 55,556 ERCPs done for BDS, 52.9â% were repeat procedures, with 11,322 patients needing multiple procedures. For hospitals performing significant numbers of ERCPs (more than 600 for BDS during the study period) patients undergoing repeat ERCPs for BDS ranged from 9â% to 50â%. Conclusions In this nationwide study, the performance at clearing BDS at first ERCP was suboptimal, with high numbers of repeat procedures required. This may have a negative impact on both patient outcomes and experience, and increase pressure on endoscopy services. Apparent variation of outcome between acute hospital care providers requires further analysis.
RESUMO
Individuals naturally carry bacteria and other microbes as part of their natural flora, with some being opportunistic pathogens. Approximately 30% of the population is known to carry Staphylococcus aureus in their nasal cavity, an organism that causes infections ranging from soft tissue abscesses to toxic shock syndrome. This problem is compounded by the presence of antibiotic-resistant strains such as Methicillin-Resistant Staphylococcus aureus (MRSA). Commensal bacteria present on cadavers pose a risk to those who handle the body. As a Medical School Anatomy laboratory that performs hands-on cadaveric dissection, we wanted to know whether the embalming process is sufficient to kill all commensal bacteria that pose a risk to staff and students. Even if these strains do not cause disease in these individuals, secondary transmission could occur to friends and family, who may be at higher risk of acquiring an infection. Embalming is assumed to eliminate all microbial contamination on the body. However, there are limited studies to confirm this. This study characterises the incidence of antibiotic sensitive and resistant bacteria in cadavers donated for medical teaching and research. We have screened for Methicillin-Resistant Organisms (MRO) and Extended-Spectrum Beta-Lactamase (ESBL) producing bacteria. In this study group of cadavers, approximately 46% (16/35) carry an MRO, while 51% (18/35) carry an ESBL positive organism prior to embalming. By determining the organisms' presence pre- and post-embalming, we can evaluate the embalming procedure's effectiveness. Our results show embalming eliminates detectable microbes in about 51% (18/35) of the cadavers. MRO dropped by 75% (16 to 4 positive cadavers), while ESBL organisms went down by almost 95% (from 18 to 1 positive cadaver). There was a further decrease in the number of positive cadavers after storage at 4 °C to 6% (2/32). Thus, although the embalming process does not immediately sterilise all the cadavers, prolonged storage at 4 °C can further reduce the number of viable bacteria.
RESUMO
The rise in antibiotic resistance has stimulated research into adjuvants that can improve the efficacy of broad-spectrum antibiotics. Lactoferrin is a candidate adjuvant; it is a multifunctional iron-binding protein with antimicrobial properties. It is known to show dose-dependent antimicrobial activity against Staphylococcus aureus through iron sequestration and repression of ß-lactamase expression. However, S. aureus can extract iron from lactoferrin through siderophores for their growth, which confounds the resolution of lactoferrin's method of action. We measured the minimum inhibitory concentration (MIC) for a range of lactoferrin/ ß-lactam antibiotic dose combinations and observed that at low doses (< 0.39 µM), lactoferrin contributes to increased S. aureus growth, but at higher doses (> 6.25 µM), iron-depleted native lactoferrin reduced bacterial growth and reduced the MIC of the ß-lactam-antibiotic cefazolin. This differential behaviour points to a bacterial population response to the lactoferrin/ ß-lactam dose combination. Here, with the aid of a mathematical model, we show that lactoferrin stratifies the bacterial population, and the resulting population heterogeneity is at the basis of the dose dependent response seen. Further, lactoferrin disables a sub-population from ß-lactam-induced production of ß-lactamase, which when sufficiently large reduces the population's ability to recover after being treated by an antibiotic. Our analysis shows that an optimal dose of lactoferrin acts as a suitable adjuvant to eliminate S. aureus colonies using ß-lactams, but sub-inhibitory doses of lactoferrin reduces the efficacy of ß-lactams.
Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Humanos , Ferro/metabolismo , Lactoferrina/metabolismo , Lactoferrina/farmacologia , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , beta-Lactamases/metabolismo , beta-Lactamas/farmacologiaRESUMO
AIMS: To determine the antimicrobial potency of a surface-anchored quaternary ammonium salt (SAQAS)-based biocide during in vitro wet and dry fomite assays and to determine the mechanism of killing bacteria on the surface. METHODS AND RESULTS: Wet and dry fomite assays were established in vitro for a commercially available biocide (SAQAS-A) applied to glass and low-density polyethylene (LDPE) surfaces. Both wet and dry fomite tests showed the active killing of Gram-positive and Gram-negative bacteria but not endospores. Assays measuring membrane permeability (ATP and DNA release), bacterial membrane potential and bacterial ROS production were correlated with the time-to-kill profiles to show SAQAS-A activity in suspension and applied to a surface. CONCLUSIONS: SAQAS-A is an effective biocide against model strains of vegetative bacteria. The killing mechanism for SAQAS-A observed minimal membrane depolarization, a surge in ROS production and assessment of membrane permeability supported the puncture of cells in both suspension and surface attachment, leading to cell death. SIGNIFICANCE AND IMPACT OF THE STUDY: SAQAS represents effective surface biocides against single challenges with bacteria through a mechanical killing ability that supports real-world application if their durability can be demonstrated to maintain residual activity.
Assuntos
Anti-Infecciosos , Desinfetantes , Trifosfato de Adenosina , Antibacterianos/farmacologia , Bactérias , Desinfetantes/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana , Polietileno/farmacologia , Compostos de Amônio Quaternário/farmacologia , Espécies Reativas de OxigênioRESUMO
Honey has been widely purported as a natural remedy due to its antimicrobial and anti-inflammatory effects. In recent years, several studies have suggested that the considerably high methylglyoxal (MGO) concentration in Manuka honey (MH) makes it particularly effective to manage bacterial overload, such as that observed in blepharitis. However, the poor solubility, high viscosity, and osmolarity of aqueous honey solutions, especially at the high MGO concentrations studied in the literature, render the formulation of an acceptable dosage form for topical application to the eyelids challenging. Here, the antibacterial properties of raw MH and alpha-cyclodextrin (α-CD)-complexed MH were evaluated at relatively low MGO concentrations, and a liquid crystalline-forming microemulsion containing α-CD-complexed MH was formulated. After determining pH and osmolarity, ocular tolerability was assessed using human primary corneal epithelial cells and chorioallantoic membranes, while the antibacterial efficacy was further evaluated in vitro. The α-CD-MH complex had significantly greater antibacterial activity against Staphylococcus aureus than either constituent alone, which was evident even when formulated as a microemulsion. Moreover, the final formulation had a physiologically acceptable pH and osmolarity for eyelid application and was well-tolerated when diluted 1:10 with artificial tear fluid, as expected to be the case after accidental exposure to the ocular surface in the clinical setting. Thus, a safe and efficient MH dosage form was developed for topical application to the eyelids, which can potentially be used to support optimal eyelid health in the management of blepharitis.
RESUMO
Decontamination of surfaces and items plays an important role in reducing the spread of infectious microorganisms in many settings including hospitals and research institutes. Regardless of the location, appropriate decontamination procedures are required for maintaining biosafety and biosecurity. For example, effective decontamination of microbial cultures is essential to ensure proper biocontainment and safety within microbiological laboratories. To this end, many commercial decontamination agents are available which have been tested to a prescribed standard to substantiate their efficacy. However, these standardised tests are unlikely to accurately reflect many conditions encountered in medical and biomedical research. Despite this, laboratory workers and other users of decontamination agents may assume that all decontamination agents will work in all situations. We tested commonly used commercial decontamination agents against a range of bacterial species to determine their efficacy under real-world research laboratory conditions. As each decontamination agent has a different recommended dilution for use, to compare their efficacy we calculated their 'effective ratio' which reflects the difference between the manufacturer-recommended dilution and the dilution needed to achieve decontamination under real-world research laboratory conditions. Effective ratios above one indicate that the agent was effective at a dilution more dilute than recommended whereas effective ratios lower than one indicate that the agent required a higher concentration than recommended. Our results show that the quaternary ammonium agents TriGene Advance and Chemgene HLD4L were the most effective out of the agents tested, with biocidal activity measured at up to 64 times the recommended dilution. In contrast, hypochlorite (bleach) and Prevail™ (stabilised hydrogen peroxide) had the lowest effective ratios amongst the tested agents. In conclusion, our data suggests that not all decontamination agents will work at the recommended dilutions under real-world research laboratory conditions. We recommend that the protocols for the use of decontamination agents are verified under the specific conditions required to ensure they are fit for purpose.