Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 2004, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30765811

RESUMO

Compact, bright neutron sources are opening up several emerging applications including detection of nuclear materials for national security applications. At Los Alamos National Laboratory, we have used a short-pulse laser to accelerate deuterons in the relativistic transparency regime. These deuterons impinge on a beryllium converter to generate neutrons. During the initial experiments where these neutrons were used for active interrogation of uranium and plutonium, we observed ß-delayed neutron production from decay of 9Li, formed by the high-energy deuteron bombardment of the beryllium converter. Analysis of the delayed neutrons provides novel evidence of the divergence of the highest energy portion of the deuterons (i.e., above 10 MeV/nucleon) from the laser axis, a documented feature of the breakout afterburner laser-plasma ion acceleration mechanism. These delayed neutrons form the basis of non-intrusive diagnostics for determining the features of deuteron acceleration as well as monitoring neutron production for the next generation of laser-driven neutron sources.

2.
Appl Radiat Isot ; 72: 89-95, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23208237

RESUMO

Transmission measurements of radiation through process pipes provide a non-intrusive method of determining the amount of product present in the pipes. The product could be a liquid, a slurry, or a gas, which is the most challenging because of the low density. Traditionally, these techniques have used a radioactive source that has to be replaced periodically. We have developed a transmission technique based on an X-ray tube instead of a decaying source. A notch filter is used to provide a narrow transmission line, and a thin silicon transmission detector is used to monitor the X-ray tube output. The transmitted X-rays are measured with a high-throughput gamma spectrometer that consists of a NaI(Tl) detector and an MCA with precise dead time correction. This spectrometer provides stable transmission measurements with an accuracy of a fraction of a percent. The shielding and collimator are made of machinable tungsten for thermal mechanical stability, as well low-cost, low-weight tungsten powder in polymer castings. We describe two methods of measuring the pipe wall thickness without evacuating the pipe. Our particular application was for enrichment monitors for UF(6) in process pipes. Enrichment monitors that are independent of the plant data require two measurements: a transmission measurement to determine the total amount of uranium in the pipe and a measurement of the 186-keV gamma-ray line to determine the amount of (235)U present. The ratio of these values gives the enrichment. Previous designs used a decaying radioactive source such as (57)Co (122 keV, T(½)=272 days) or (109)Cd (22 keV, T(½)=1.2 years). A major effort was required to access and periodically replace these sources in operating plants. In this report, we describe the use of an X-ray tube, which eliminated the source problem, and other innovations. Then we present data from an enrichment monitor that incorporates these innovations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA