Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mil Med ; 181(9): 1142-50, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27612366

RESUMO

Potable water is essential to maintain health and sustain military operations, but carrying and transporting water is a major logistical burden. Planning for group drinking water needs is complex, requiring understanding of sweat losses on the basis of intensity of activity, clothing biophysical parameters, and environmental conditions. Use of existing prediction equations is limited to tabled doctrine (e.g., Technical Bulletin, Medical 507) or to individuals with extensive expertise in thermal biophysics. In the present project, we translated the latest updated equations into a user-friendly Android application (Soldier Water Estimation Tool, SWET) that provides estimated drinking water required from 5 simple inputs based upon a detailed multiparametric sensitivity analysis. Users select from multiple choice inputs for activity level, clothing, and cloud cover, and manually enter exact values for temperature and relative humidity. Total drinking water needs for a unit are estimated in the Mission Planner tool on the basis of mission duration and number of personnel. In preliminary user acceptability testing, responses were overall positive in terms of ease of use and military relevance. Use of SWET for water planning will minimize excessive load (water) carriage in training and mission settings, and will reduce the potential for dehydration and/or hyponatremia to impair Warfighter health and performance.


Assuntos
Água Potável/administração & dosagem , Militares/estatística & dados numéricos , Aplicativos Móveis/tendências , Avaliação das Necessidades , Técnicas de Planejamento , Humanos , Reprodutibilidade dos Testes , Design de Software , Sudorese , Temperatura , Interface Usuário-Computador
2.
Nat Mater ; 13(5): 524-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24728464

RESUMO

Polymer microparticles with unique, decodable identities are versatile information carriers with a small footprint. Widespread incorporation into industrial processes, however, is limited by a trade-off between encoding density, scalability and decoding robustness in diverse physicochemical environments. Here, we report an encoding strategy that combines spatial patterning with rare-earth upconversion nanocrystals, single-wavelength near-infrared excitation and portable CCD (charge-coupled device)-based decoding to distinguish particles synthesized by means of flow lithography. This architecture exhibits large, exponentially scalable encoding capacities (>10(6) particles), an ultralow decoding false-alarm rate (<10(-9)), the ability to manipulate particles by applying magnetic fields, and pronounced insensitivity to both particle chemistry and harsh processing conditions. We demonstrate quantitative agreement between observed and predicted decoding for a range of practical applications with orthogonal requirements, including covert multiparticle barcoding of pharmaceutical packaging (refractive-index matching), multiplexed microRNA detection (biocompatibility) and embedded labelling of high-temperature-cast objects (temperature resistance).


Assuntos
Polímeros/química , Materiais Biocompatíveis/química , Engenharia Química , Embalagem de Medicamentos , Técnicas Eletroquímicas , Temperatura Alta , Campos Magnéticos , Nanopartículas Metálicas/química , Metais Terras Raras/química , MicroRNAs/análise , Nanopartículas/química , Tamanho da Partícula , Polímeros/síntese química
4.
Biomacromolecules ; 11(9): 2407-14, 2010 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-20795701

RESUMO

A strategy was developed to produce thin, biopolymer-based polyelectrolyte multilayer films, based on hyaluronic acid and chitosan, that are able to effectively bind B lymphocytes. These films explore CD44-hyaluronate interactions and provide a method to make surface-bound B cell arrays without the need for nonselective covalent chemistry. The rational design of these films using solution deposition variables, such as ionic strength and pH, allows one to maximize and fine tune this binding efficiency ex vivo. This work suggests two important conditions for successfully attaching B cells to hyaluronate-containing polyelectrolyte multilayer films: (1) hyaluronic acid is required for the proposed CD44-mediated binding mechanism, and (2) hyaluronic acid deposition conditions that favor loops and tails, such as low pH and with added salt, result in more available CD44 binding ligands and higher cell binding efficiency. Chitosan-terminated films prepared without NaCl in the deposition solutions and hyaluronic acid-terminated films prepared with salt, both under pH 3.0 assembly conditions, presented a similar high lymphocyte binding efficiency. In the former case, however, the binding strength was weaker due to a significant electrostatic contribution to the binding. Bioactive polyelectrolyte multilayers for selective binding of lymphocytes hold great promise in fields ranging from cell-based biosensors to immune system engineering.


Assuntos
Linfócitos B/metabolismo , Carcinoma de Células Escamosas/metabolismo , Adesão Celular , Quitosana/química , Eletrólitos/química , Ácido Hialurônico/farmacologia , Neoplasias Pulmonares/metabolismo , Carcinoma de Células Escamosas/patologia , Humanos , Ácido Hialurônico/química , Concentração de Íons de Hidrogênio , Neoplasias Pulmonares/patologia , Nanopartículas , Concentração Osmolar , Propriedades de Superfície , Células Tumorais Cultivadas
5.
Biomacromolecules ; 11(7): 1826-32, 2010 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-20527876

RESUMO

Cellular "backpacks" are a new type of anisotropic, nanoscale thickness microparticle that may be attached to the surface of living cells creating a "bio-hybrid" material. Previous work has shown that these backpacks do not impair cell viability or native functions such as migration in a B and T cell line, respectively. In the current work, we show that backpacks, when added to a cell suspension, assemble cells into aggregates of reproducible size. We investigate the efficiency of backpack-cell binding using flow cytometry and laser diffraction, examine the influence of backpack diameter on aggregate size, and show that even when cell-backpack complexes are forced through small pores, backpacks are not removed from the surfaces of cells.


Assuntos
Linfócitos B/fisiologia , Adesão Celular , Substâncias Macromoleculares/química , Linfócitos B/metabolismo , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Tamanho da Partícula
6.
Langmuir ; 26(11): 8953-8, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20158176

RESUMO

Chitosan/silk fibroin multilayer thin films were assembled using layer-by-layer deposition. The resultant multilayer films contained nanofibers aligned parallel to the dipping direction. Fiber deposition and orientation was enabled uniquely by a judicious choice of solvent and drying conditions and layer-by-layer assembly with chitosan. The deposition of oriented nanofibers was found to be the result of a unique combination of layer-by-layer and Langmuir-Blodgett type processing. Fiber orientation was confirmed by fast Fourier transform (FFT) analysis of optical micrographs and atomic force microscopy (AFM). Bidirectional fiber alignment was realized by rotating the substrate between multilayer deposition steps. Infrared spectroscopy revealed that the silk fibroin adopted the silk II secondary structure in the deposited films. We anticipate that these anisotropic films are able to combine the biocompatibility of a natural polymer system with the mechanical strength of SF, two properties useful in many biological applications including scaffolds suitable for guiding cell attachment and spreading.

7.
Nano Lett ; 8(12): 4446-53, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19367972

RESUMO

We demonstrate that functional polyelectrolyte multilayer (PEM) patches can be attached to a fraction of the surface area of living, individual lymphocytes. Surface-modified cells remain viable at least 48 h following attachment of the functional patch, and patches carrying magnetic nanoparticles allow the cells to be spatially manipulated using a magnetic field. The patch does not completely occlude the cellular surface from the surrounding environment; this approach allows a functional payload to be attached to a cell that is still free to perform its native functions, as suggested by preliminary studies on patch-modified T-cell migration. This approach has potential for broad applications in bioimaging, cellular functionalization, immune system and tissue engineering, and cell-based therapeutics where cell-environment interactions are critical.


Assuntos
Membrana Celular , Eletrólitos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA