Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565696

RESUMO

The conversion of phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-triphosphate by phosphoinositide 3-kinase γ (PI3Kγ) is critical for neutrophil chemotaxis and cancer metastasis. PI3Kγ is activated by Gßγ heterodimers released from G protein-coupled receptors responding to extracellular signals. Here we determined cryo-electron microscopy structures of Sus scrofa PI3Kγ-human Gßγ complexes in the presence of substrates/analogs, revealing two Gßγ binding sites: one on the p110γ helical domain and another on the p101 C-terminal domain. Comparison with PI3Kγ alone reveals conformational changes in the kinase domain upon Gßγ binding that are similar to Ras·GTP-induced changes. Assays of variants perturbing the Gßγ binding sites and interdomain contacts altered by Gßγ binding suggest that Gßγ recruits the enzyme to membranes and allosterically regulates activity via both sites. Studies of zebrafish neutrophil migration align with these findings, paving the way for in-depth investigation of Gßγ-mediated activation mechanisms in this enzyme family and drug development for PI3Kγ.

2.
Zebrafish ; 20(4): 175-179, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37306974

RESUMO

Emergency granulopoiesis (EG) is a response to severe inflammation in which increased neutrophils are generated in the hematopoietic tissue. Photolabeling is utilized to distinguish newly developed neutrophils from existing neutrophils. However, this technique requires a strong laser line and labels subsets of the existing neutrophils. Here we create a transgenic zebrafish line that expresses a time-dependent switch from green fluorescent protein (GFP) to red fluorescent protein (RFP) in neutrophils, which allows quantification of EG using simple GFP/RFP ratiometric imaging.


Assuntos
Luz , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Animais Geneticamente Modificados , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Neutrófilos/metabolismo
3.
bioRxiv ; 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37205329

RESUMO

The conversion of PIP2 to PIP3 by phosphoinositide 3-kinase γ (PI3Kγ) is a critical step in neutrophil chemotaxis and is essential for metastasis in many types of cancer. PI3Kγ is activated via directed interaction with Gßγ heterodimers released from cell-surface G protein-coupled receptors (GPCRs) responding to extracellular signals. To resolve how Gßγ activates PI3Kγ, we determined cryo-EM reconstructions of PI3Kγ-Gßγ complexes in the presence of various substrates/analogs, revealing two distinct Gßγ binding sites, one on the p110γ helical domain and one on the C-terminal domain of the p101 subunit. Comparison of these complexes with structures of PI3Kγ alone demonstrates conformational changes in the kinase domain upon Gßγ binding similar to those induced by Ras·GTP. Assays of variants perturbing the two Gßγ binding sites and interdomain contacts that change upon Gßγ binding suggest that Gßγ not only recruits the enzyme to membranes but also allosterically controls activity via both sites. Studies in a zebrafish model examining neutrophil migration are consistent with these results. These findings set the stage for future detailed investigation of Gßγ-mediated activation mechanisms in this enzyme family and will aid in developing drugs selective for PI3Kγ.

4.
J Immunol Regen Med ; 202023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37089616

RESUMO

Immunotherapy is a powerful technique where immune cells are modified to improve cytotoxicity against cancerous cells to treat cancers that do not respond to surgery, chemotherapy, or radiotherapy. Expressing chimeric antigen receptor (CAR) in immune cells, typically T lymphocytes, is a practical modification that drives an immune response against cancerous tissue. CAR-T efficacy is suboptimal in solid tumors due to the tumor microenvironment (TME) that limits T lymphocyte cytotoxicity. In this study, we demonstrate that neutrophils differentiated from human pluripotent stem cells modified with AAVS1-inserted CAR constructs showed a robust cytotoxic effect against prostate-specific membrane antigen (PSMA) expressing LNCaP cells as a model for prostate cancer in vitro. Our results suggest that engineered CAR can significantly enhance the neutrophil anti-tumor effect, providing a new avenue in treating prostate cancers.

5.
Nat Commun ; 14(1): 2266, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37080958

RESUMO

Glioblastoma (GBM) is one of the most aggressive and lethal solid tumors in human. While efficacious therapeutics, such as emerging chimeric antigen receptor (CAR)-T cells and chemotherapeutics, have been developed to treat various cancers, their effectiveness in GBM treatment has been hindered largely by the blood-brain barrier and blood-brain-tumor barriers. Human neutrophils effectively cross physiological barriers and display effector immunity against pathogens but the short lifespan and resistance to genome editing of primary neutrophils have limited their broad application in immunotherapy. Here we genetically engineer human pluripotent stem cells with CRISPR/Cas9-mediated gene knock-in to express various anti-GBM CAR constructs with T-specific CD3ζ or neutrophil-specific γ-signaling domains. CAR-neutrophils with the best anti-tumor activity are produced to specifically and noninvasively deliver and release tumor microenvironment-responsive nanodrugs to target GBM without the need to induce additional inflammation at the tumor sites. This combinatory chemo-immunotherapy exhibits superior and specific anti-GBM activities, reduces off-target drug delivery and prolongs lifespan in female tumor-bearing mice. Together, this biomimetic CAR-neutrophil drug delivery system is a safe, potent and versatile platform for treating GBM and possibly other devastating diseases.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Camundongos , Feminino , Humanos , Animais , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Imunoterapia Adotiva , Neutrófilos , Linfócitos T , Microambiente Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Imunoterapia , Nanopartículas/uso terapêutico
6.
Cell Rep ; 40(3): 111128, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858579

RESUMO

Neutrophils, the most abundant white blood cells in circulation, are closely related to cancer development and progression. Healthy primary neutrophils present potent cytotoxicity against various cancer cell lines through direct contact and via generation of reactive oxygen species. However, due to their short half-life and resistance to genetic modification, neutrophils have not yet been engineered with chimeric antigen receptors (CARs) to enhance their antitumor cytotoxicity for targeted immunotherapy. Here, we genetically engineered human pluripotent stem cells with synthetic CARs and differentiated them into functional neutrophils by implementing a chemically defined platform. The resulting CAR neutrophils present superior and specific cytotoxicity against tumor cells both in vitro and in vivo. Collectively, we established a robust platform for massive production of CAR neutrophils, paving the way to myeloid cell-based therapeutic strategies that would boost current cancer-treatment approaches.


Assuntos
Neoplasias , Células-Tronco Pluripotentes , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia , Imunoterapia Adotiva/métodos , Neoplasias/terapia , Neutrófilos/metabolismo , Células-Tronco Pluripotentes/metabolismo , Receptores de Antígenos Quiméricos/metabolismo
7.
Biomaterials ; 285: 121569, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35567999

RESUMO

Human hematopoietic stem cells (HSCs), which arise from aorta-gonad-mesonephros (AGM), are widely used to treat blood diseases and cancers. However, a technique for their robust generation in vitro is still missing. Here we show temporal manipulation of Wnt signaling is sufficient and essential to induce AGM-like hematopoiesis from human pluripotent stem cells. TGFß inhibition at the stage of aorta-like SOX17+CD235a- hemogenic endothelium yielded AGM-like hematopoietic progenitors, which closely resembled primary cord blood HSCs at the transcriptional level and contained diverse lineage-primed progenitor populations via single cell RNA-sequencing analysis. Notably, the resulting definitive cells presented lymphoid and myeloid potential in vitro; and could home to a definitive hematopoietic site in zebrafish and rescue bloodless zebrafish after transplantation. Engraftment and multilineage repopulating activities were also observed in mouse recipients. Together, our work provided a chemically-defined and feeder-free culture platform for scalable generation of AGM-like hematopoietic progenitor cells, leading to enhanced production of functional blood and immune cells for various therapeutic applications.


Assuntos
Hemangioblastos , Animais , Diferenciação Celular/fisiologia , Hematopoese/fisiologia , Células-Tronco Hematopoéticas , Humanos , Mesonefro , Camundongos , Peixe-Zebra
8.
Front Immunol ; 13: 756034, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309302

RESUMO

Neutrophil migration and activation are essential for defense against pathogens. However, this process may also lead to collateral tissue injury. We used microRNA overexpression as a platform and discovered protein-coding genes that regulate neutrophil migration. Here we show that miR-99 decreased the chemotaxis of zebrafish neutrophils and human neutrophil-like cells. In zebrafish neutrophils, miR-99 directly targets the transcriptional factor RAR-related orphan receptor alpha (roraa). Inhibiting RORα, but not the closely related RORγ, reduced chemotaxis of zebrafish and primary human neutrophils without causing cell death, and increased susceptibility of zebrafish to bacterial infection. Expressing a dominant-negative form of Rorα or disrupting the roraa locus specifically in zebrafish neutrophils reduced cell migration. At the transcriptional level, RORα regulates transmembrane signaling receptor activity and protein phosphorylation pathways. Our results, therefore, reveal previously unknown functions of miR-99 and RORα in regulating neutrophil migration and anti-microbial defense.


Assuntos
MicroRNAs , Peixe-Zebra , Animais , Movimento Celular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neutrófilos/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
9.
J Leukoc Biol ; 111(5): 1057-1068, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35188696

RESUMO

Neutrophils are terminally differentiated, short-lived white blood cells critical for innate immunity. Although cyclin-dependent kinases (CDKs) are typically related to cell cycle progression, increasing evidence has shown that they regulate essential functions of neutrophils. This review highlights the roles of CDKs and their partners, cyclins, in neutrophils, outside of cell cycle regulation. CDK1-10 and several cyclins are expressed in neutrophils, albeit at different levels. Observed phenotypes associated with specific inhibition or genetic loss of CDK2 indicate its role in modulating neutrophil migration. CDK4 and 6 regulate neutrophil extracellular traps (NETs) formation, while CDK5 regulates neutrophil degranulation. CDK7 and 9 are critical in neutrophil apoptosis, contributing to inflammation resolution. In addition to the CDKs that regulate mature neutrophil functions, cyclins are essential in hematopoiesis and granulopoiesis. The pivotal roles of CDKs in neutrophils present an untapped potential in targeting CDKs for treating neutrophil-dominant inflammatory diseases and understanding the regulation of the neutrophil life cycle.


Assuntos
Ciclinas , Neutrófilos , Pontos de Checagem do Ciclo Celular , Ciclinas/genética , Ciclinas/metabolismo , Neutrófilos/metabolismo
10.
J Cell Sci ; 134(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33722979

RESUMO

CRISPR/Cas9-based tissue-specific knockout techniques are essential for probing the functions of genes in embryonic development and disease using zebrafish. However, the lack of capacity to perform gene-specific rescue or live imaging in the tissue-specific knockout background has limited the utility of this approach. Here, we report a robust and flexible gateway system for tissue-specific gene inactivation in neutrophils. Using a transgenic fish line with neutrophil-restricted expression of Cas9 and ubiquitous expression of single guide (sg)RNAs targeting rac2, specific disruption of the rac2 gene in neutrophils is achieved. Transient expression of sgRNAs targeting rac2 or cdk2 in the neutrophil-restricted Cas9 line also results in significantly decreased cell motility. Re-expressing sgRNA-resistant rac2 or cdk2 genes restores neutrophil motility in the corresponding knockout background. Moreover, active Rac and force-bearing F-actins localize to both the cell front and the contracting tail during neutrophil interstitial migration in an oscillating fashion that is disrupted when rac2 is knocked out. Together, our work provides a potent tool that can be used to advance the utility of zebrafish in identifying and characterizing gene functions in a tissue-specific manner.


Assuntos
Neutrófilos , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Neutrófilos/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo
11.
J Cell Sci ; 133(17)2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32788232

RESUMO

Neutrophils rely on glycolysis for energy production. How mitochondria regulate neutrophil function is not fully understood. Here, we report that mitochondrial outer membrane protein Mitofusin 2 (MFN2) regulates neutrophil homeostasis and chemotaxis in vivoMfn2-deficient neutrophils are released from the hematopoietic tissue, trapped in the vasculature in zebrafish embryos, and not capable of chemotaxis. Consistent with this, human neutrophil-like cells that are deficient for MFN2 fail to arrest on activated endothelium under sheer stress or perform chemotaxis on 2D surfaces. Deletion of MFN2 results in a significant reduction of neutrophil infiltration to the inflamed peritoneal cavity in mice. Mechanistically, MFN2-deficient neutrophil-like cells display disrupted mitochondria-ER interaction, heightened intracellular Ca2+ levels and elevated Rac activation after chemokine stimulation. Restoring a mitochondria-ER tether rescues the abnormal Ca2+ levels, Rac hyperactivation and chemotaxis defect resulting from MFN2 depletion. Finally, inhibition of Rac activation restores chemotaxis in MFN2-deficient neutrophils. Taken together, we have identified that MFN2 regulates neutrophil migration via maintaining the mitochondria-ER interaction to suppress Rac activation, and uncovered a previously unrecognized role of MFN2 in regulating cell migration and the actin cytoskeleton.This article has an associated First Person interview with the first authors of the paper.


Assuntos
Neutrófilos , Peixe-Zebra , Citoesqueleto de Actina , Adesivos , Animais , Movimento Celular , Camundongos
12.
Proc Natl Acad Sci U S A ; 116(37): 18561-18570, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31451657

RESUMO

Neutrophil migration is essential for inflammatory responses to kill pathogens; however, excessive neutrophilic inflammation also leads to tissue injury and adverse effects. To discover novel therapeutic targets that modulate neutrophil migration, we performed a neutrophil-specific microRNA (miRNA) overexpression screen in zebrafish and identified 8 miRNAs as potent suppressors of neutrophil migration. Among those, miR-199 decreases neutrophil chemotaxis in zebrafish and human neutrophil-like cells. Intriguingly, in terminally differentiated neutrophils, miR-199 alters the cell cycle-related pathways and directly suppresses cyclin-dependent kinase 2 (Cdk2), whose known activity is restricted to cell cycle progression and cell differentiation. Inhibiting Cdk2, but not DNA replication, disrupts cell polarity and chemotaxis of zebrafish neutrophils without inducing cell death. Human neutrophil-like cells deficient in CDK2 fail to polarize and display altered signaling downstream of the formyl peptide receptor. Chemotaxis of primary human neutrophils is also reduced upon CDK2 inhibition. Furthermore, miR-199 overexpression or CDK2 inhibition significantly improves the outcome of lethal systemic inflammation challenges in zebrafish. Our results therefore reveal previously unknown functions of miR-199 and CDK2 in regulating neutrophil migration and provide directions in alleviating systemic inflammation.


Assuntos
Quimiotaxia de Leucócito/genética , Quinase 2 Dependente de Ciclina/genética , MicroRNAs/metabolismo , Neutrófilos/imunologia , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Animais , Animais Geneticamente Modificados , Linhagem Celular Tumoral , Quimiotaxia de Leucócito/efeitos dos fármacos , Quimiotaxia de Leucócito/imunologia , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/imunologia , Modelos Animais de Doenças , Regulação para Baixo/imunologia , Técnicas de Silenciamento de Genes , Humanos , Larva , Cultura Primária de Células , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Síndrome de Resposta Inflamatória Sistêmica/genética , Peixe-Zebra
13.
Mol Immunol ; 112: 206-214, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31176200

RESUMO

Neutrophil migration is essential for battling against infections but also drives chronic inflammation. Since primary neutrophils are terminally differentiated and not genetically tractable, leukemia cells such as HL-60 are differentiated into neutrophil-like cells to study mechanisms underlying neutrophil migration. However, constitutive overexpression or inhibition in this cell line does not allow the characterization of the genes that affect the differentiation process. Here we apply the tet-on system to induce the expression of a zebrafish microRNA, dre-miR-722, in differentiated HL-60. Overexpression of miR-722 reduced the mRNA level of genes in the chemotaxis and inflammation pathways, including Ras-Related C3 Botulinum Toxin Substrate 2 (RAC2). Consistently, polarization of the actin cytoskeleton, cell migration and generation of the reactive oxygen species are significantly inhibited upon induced miR-722 overexpression. Together, zebrafish miR-722 is a suppressor for migration and signaling in human neutrophil like cells.


Assuntos
Quimiotaxia/genética , MicroRNAs/genética , Neutrófilos/fisiologia , Peixe-Zebra/genética , Actinas/genética , Animais , Diferenciação Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Células HEK293 , Células HL-60 , Humanos , Inflamação/genética , Leucemia/genética , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Proteínas de Peixe-Zebra/genética , Proteínas rac de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA