RESUMO
Replication-incompetent single cycle infectious Influenza A Virus (sciIAV) has demonstrated utility as a research and vaccination platform. Protein-based therapeutics are increasingly attractive due to their high selectivity and potent efficacy but still suffer from low bioavailability and high manufacturing cost. Transient RNA-mediated delivery is a safe alternative that allows for expression of protein-based therapeutics within the target cells or tissues but is limited by delivery efficiency. Here, we develop recombinant sciIAV as a platform for transient gene delivery in vivo and in vitro for therapeutic, research, and manufacturing applications (in vivo antimicrobial production, cell culture contamination clearance, and production of antiviral proteins in vitro). While adapting the system to deliver new protein cargo we discovered expression differences presumably resulting from genetic context effects. We applied a high-throughput screen to map these within the 3'-untranslated and coding regions of the hemagglutinin-encoding segment 4. This screen revealed permissible mutations in the 3'-UTR and depletion of RNA level motifs in the N-terminal coding region.
RESUMO
BACKGROUND: Threshold-dependent gene drives (TDGDs) could be used to spread desirable traits through a population, and are likely to be less invasive and easier to control than threshold-independent gene drives. Engineered Genetic Incompatibility (EGI) is an extreme underdominance system previously demonstrated in Drosophila melanogaster that can function as a TDGD when EGI agents of both sexes are released into a wild-type population. RESULTS: Here we use a single generation fitness assay to compare the fecundity, mating preferences, and temperature-dependent relative fitness to wild-type of two distinct genotypes of EGI agents. We find significant differences in the behavior/performance of these EGI agents that would not be predicted a priori based on their genetic design. We report a surprising temperature-dependent change in the predicted threshold for population replacement in an EGI agent that drives ectopic expression of the developmental morphogen pyramus. CONCLUSIONS: The single-generation fitness assay presented here could reduce the amount of time required to estimate the threshold for TDGD strategies for which hybrid genotypes are inviable. Additionally, this work underscores the importance of empirical characterization of multiple engineered lines, as behavioral differences can arise in unique genotypes for unknown reasons.
Assuntos
Drosophila melanogaster , Tecnologia de Impulso Genético , Animais , Masculino , Feminino , Animais Geneticamente Modificados , Drosophila melanogaster/genética , Engenharia Genética , Dinâmica PopulacionalRESUMO
CRISPR/Cas-based transcriptional activators have been developed to induce gene expression in eukaryotic and prokaryotic organisms. The main advantages of CRISPR/Cas-based systems is that they can achieve high levels of transcriptional activation and are very easy to program via pairing between the guide RNA and the DNA target strand. SunTag is a second-generation system that activates transcription by recruiting multiple copies of an activation domain (AD) to its target promoters. SunTag is a strong activator; however, in some species it is difficult to stably express. To overcome this problem, we designed MoonTag, a new activator that works on the same basic principle as SunTag, but whose components are better tolerated when stably expressed in transgenic plants. We demonstrate that MoonTag is capable of inducing high levels of transcription in all plants tested. In Setaria, MoonTag is capable of inducing high levels of transcription of reporter genes as well as of endogenous genes. More important, MoonTag components are expressed in transgenic plants to high levels without any deleterious effects. MoonTag is also able to efficiently activate genes in eudicotyledonous species such as Arabidopsis and tomato. Finally, we show that MoonTag activation is functional across a range of temperatures, which is promising for potential field applications.
Assuntos
Arabidopsis , Fatores de Transcrição , Ativação Transcricional , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sistemas CRISPR-Cas , Arabidopsis/genética , Arabidopsis/metabolismo , Plantas Geneticamente Modificadas/genéticaRESUMO
Modern tools in DNA synthesis and assembly give genetic engineers control over the nucleotide-level design of complex, multi-gene systems. Systematic approaches to explore genetic design space and optimize the performance of genetic constructs are lacking. Here we explore the application of a five-level Plackett-Burman fractional factorial design to improve the titer of a heterologous terpene biosynthetic pathway in Streptomyces. A library of 125 engineered gene clusters encoding the production of diterpenoid ent-atiserenoic acid (eAA) via the methylerythritol phosphate pathway was constructed and introduced into Streptomyces albidoflavus J1047 for heterologous expression. The eAA production titer varied within the library by over two orders of magnitude and host strains showed unexpected and reproducible colony morphology phenotypes. Analysis of Plackett-Burman design identified expression of dxs, the gene encoding the first and the flux-controlling enzyme, having the strongest impact on eAA titer, but with a counter-intuitive negative correlation between dxs expression and eAA production. Finally, simulation modeling was performed to determine how several plausible sources of experimental error/noise and non-linearity impact the utility of Plackett-Burman analyses.
Assuntos
Streptomyces , Terpenos , Terpenos/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Engenharia Genética , Biblioteca Gênica , Vias Biossintéticas , Família MultigênicaRESUMO
CRISPR/Cas-based transcriptional activators have been developed to induce gene expression in eukaryotic and prokaryotic organisms. The main advantages of CRISPR-Cas based systems is that they can achieve high levels of transcriptional activation and are very easy to program via pairing between the guide RNA and the DNA target strand. SunTag is a second-generation system that activates transcription by recruiting multiple copies of an activation domain (AD) to its target promoters. SunTag is a strong activator; however, in some species it is difficult to stably express. To overcome this problem, we designed MoonTag, a new activator that worked on the same basic principle as SunTag, but whose components are better tolerated when stably expressed in transgenic plants. We demonstrate that MoonTag is capable of inducing high levels of transcription in all plants tested. In Setaria, MoonTag is capable of inducing high levels of transcription of reporter genes as well as of endogenous genes. More important, MoonTag components are expressed in transgenic plants to high levels without any deleterious effects. MoonTag is also able to efficiently activate genes in eudicotyledonous species such as Arabidopsis and tomato. Finally, we show that MoonTag activation is functional across a range of temperatures, which is promising for potential field applications.
RESUMO
[This corrects the article DOI: 10.3389/finsc.2022.1063789.].
RESUMO
Recent advances in DNA synthesis and assembly allow for genetic constructs to be designed and constructed in high throughput. Characterizing large numbers of variant genetic designs is not feasible with low-throughput and time-consuming plant transformation workflows. Protoplast transformation offers a rapid, high-throughput compatible alternative for testing genetic constructs in plant-relevant molecular environments. Here, we describe a protocol for protoplast transformation using a recent experiment in genetic optimization of dCas9-based programmable transcription activators as an example.
Assuntos
Protoplastos , Setaria (Planta) , Plantas/genética , Setaria (Planta)/genética , TransfecçãoRESUMO
Engineered Genetic Incompatibility (EGI) is a method to create species-like barriers to sexual reproduction. It has applications in pest control that mimic Sterile Insect Technique when only EGI males are released. This can be facilitated by introducing conditional female-lethality to EGI strains to generate a sex-sorting incompatible male system (SSIMS). Here, we demonstrate a proof of concept by combining tetracycline-controlled female lethality constructs with a pyramus-targeting EGI line in the model insect Drosophila melanogaster. We show that both functions (incompatibility and sex-sorting) are robustly maintained in the SSIMS line and that this approach is effective for population suppression in cage experiments. Further we show that SSIMS males remain competitive with wild-type males for reproduction with wild-type females, including at the level of sperm competition.
Assuntos
Drosophila melanogaster/genética , Infertilidade/genética , Animais , Animais Geneticamente Modificados , Feminino , Engenharia Genética , MasculinoRESUMO
Engineered Genetic Incompatibility (EGI) is an engineered extreme underdominance genetic system wherein hybrid animals are not viable, functioning as a synthetic speciation event. There are several strategies in which EGI could be leveraged for genetic biocontrol of pest populations. We used an agent-based model of Drosophila suzukii (Spotted Wing Drosophila) to determine how EGI would fare with high rates of endemic genetic resistance alleles. We discovered a surprising failure mode wherein field-generated females convert an incompatible male release program into a population replacement gene drive. Local suppression could still be attained in two seasons by tailoring the release strategy to take advantage of this effect, or alternatively in one season by altering the genetic design of release agents. We show in this work that data from modeling can be utilized to recognize unexpected emergent phenomena and a priori inform genetic biocontrol treatment design to increase efficacy.