Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37240038

RESUMO

Exposure to commonly used anesthetics leads to neurotoxic effects in animal models-ranging from cell death to learning and memory deficits. These neurotoxic effects invoke a variety of molecular pathways, exerting either immediate or long-term effects at the cellular and behavioural levels. However, little is known about the gene expression changes following early neonatal exposure to these anesthetic agents. We report here on the effects of sevoflurane, a commonly used inhalational anesthetic, on learning and memory and identify a key set of genes that may likely be involved in the observed behavioural deficits. Specifically, we demonstrate that sevoflurane exposure in postnatal day 7 (P7) rat pups results in subtle, but distinct, memory deficits in the adult animals that have not been reported previously. Interestingly, when given intraperitoneally, pre-treatment with dexmedetomidine (DEX) could only prevent sevoflurane-induced anxiety in open field testing. To identify genes that may have been altered in the neonatal rats after sevoflurane and DEX exposure, specifically those impacting cellular viability, learning, and memory, we conducted an extensive Nanostring study examining over 770 genes. We found differential changes in the gene expression levels after exposure to both agents. A number of the perturbed genes found in this study have previously been implicated in synaptic transmission, plasticity, neurogenesis, apoptosis, myelination, and learning and memory. Our data thus demonstrate that subtle, albeit long-term, changes observed in an adult animal's learning and memory after neonatal anesthetic exposure may likely involve perturbation of specific gene expression patterns.


Assuntos
Anestésicos Inalatórios , Aprendizagem , Animais , Ratos , Sevoflurano/farmacologia , Animais Recém-Nascidos , Ratos Sprague-Dawley , Anestésicos Inalatórios/toxicidade , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/genética , Aprendizagem em Labirinto , Hipocampo/metabolismo
2.
Biomedicines ; 11(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36830927

RESUMO

Anesthetics have been shown to cause cytotoxicity, cell death, affect neuronal growth and connectivity in animal models; however, their effects on learning and memory remain to be fully defined. Here, we examined the effects of the inhalation anesthetic sevoflurane (SEV)-both in vivo by examining learning and memory in freely behaving animals, and in vitro using cultured neurons to assess its impact on viability, mitochondrial structure, and function. We demonstrate here that neonatal exposure to sub-clinically used concentrations of SEV results in significant, albeit subtle and previously unreported, learning and memory deficits in adult animals. These deficits involve neuronal cell death, as observed in cell culture, and are likely mediated through perturbed mitochondrial structure and function. Parenthetically, both behavioural deficits and cell death were prevented when the animals and cultured neurons were pre-treated with the anesthetic adjuvant Dexmedetomidine (DEX). Taken together, our data provide direct evidence for sevoflurane-induced cytotoxic effects at the neuronal level while perturbing learning and memory at the behavioural level. In addition, our data underscore the importance of adjuvant agents such as DEX that could potentially counter the harmful effects of commonly used anesthetic agents for better clinical outcomes.

3.
Cells ; 11(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36497062

RESUMO

Referenced below are the top 10 cited papers in 2021 from the Section "Cells of the Nervous System", published in Cells (ISSN: 2073-4409) [...].

4.
Cells ; 11(24)2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36552783

RESUMO

Cholinergic neuronal networks in the hippocampus play a key role in the regulation of learning and memory in mammals. Perturbations of these networks, in turn, underlie neurodegenerative diseases. However, the mechanisms remain largely undefined. We have recently demonstrated that an in vitro MEN1 gene deletion perturbs nicotinic cholinergic plasticity at the hippocampal glutamatergic synapses. Furthermore, MEN1 neuronal conditional knockout in freely behaving animals has also been shown to result in learning and memory deficits, though the evidence remains equivocal. In this study, using an AVV viral vector transcription approach, we provide direct evidence that MEN1 gene deletion in the CA1 region of the hippocampus indeed leads to contextual fear conditioning deficits in conditional knockout animals. This loss of function was, however, recovered when the same animals were re-injected to overexpress MEN1. This study provides the first direct evidence for the sufficiency and necessity of MEN1 in fear conditioning, and further endorses the role of menin in the regulation of cholinergic synaptic machinery in the hippocampus. These data underscore the importance of further exploring and revisiting the cholinergic hypothesis that underlies neurodegenerative diseases that affect learning and memory.


Assuntos
Região CA1 Hipocampal , Memória , Proteínas Proto-Oncogênicas , Animais , Camundongos , Região CA1 Hipocampal/metabolismo , Mutação com Ganho de Função , Hipocampo/metabolismo , Mamíferos/metabolismo , Camundongos Knockout , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Sinapses/metabolismo , Memória/fisiologia
5.
Cells ; 10(12)2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34943798

RESUMO

The perturbation of nicotinic cholinergic receptors is thought to underlie many neurodegenerative and neuropsychiatric disorders, such as Alzheimer's and schizophrenia. We previously identified that the tumor suppressor gene, MEN1, regulates both the expression and synaptic targeting of α7 nAChRs in the mouse hippocampal neurons in vitro. Here we sought to determine whether the α7 nAChRs gene expression reciprocally regulates the expression of menin, the protein encoded by the MEN1 gene, and if this interplay impacts learning and memory. We demonstrate here that α7 nAChRs knockdown (KD) both in in vitro and in vivo, initially upregulated and then subsequently downregulated menin expression. Exogenous expression of menin using an AAV transduction approach rescued α7 nAChRs KD mediated functional and behavioral deficits specifically in hippocampal (CA1) neurons. These effects involved the modulation of the α7 nAChR subunit expression and functional clustering at the synaptic sites. Our data thus demonstrates a novel and important interplay between the MEN1 gene and the α7 nAChRs in regulating hippocampal-dependent learning and memory.


Assuntos
Região CA1 Hipocampal/metabolismo , Memória , Neurônios/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Bungarotoxinas/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Feminino , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurogênese , Especificidade de Órgãos , Fenótipo , Proteínas Proto-Oncogênicas/genética , Sinapses/metabolismo , Sinaptotagmina I/metabolismo
6.
Sci Rep ; 11(1): 21952, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34754055

RESUMO

Neural recordings made to date through various approaches-both in-vitro or in-vivo-lack high spatial resolution and a high signal-to-noise ratio (SNR) required for detailed understanding of brain function, synaptic plasticity, and dysfunction. These shortcomings in turn deter the ability to further design diagnostic, therapeutic strategies and the fabrication of neuro-modulatory devices with various feedback loop systems. We report here on the simulation and fabrication of fully configurable neural micro-electrodes that can be used for both in vitro and in vivo applications, with three-dimensional semi-insulated structures patterned onto custom, fine-pitch, high density arrays. These microelectrodes were interfaced with isolated brain slices as well as implanted in brains of freely behaving rats to demonstrate their ability to maintain a high SNR. Moreover, the electrodes enabled the detection of epileptiform events and high frequency oscillations in an epilepsy model thus offering a diagnostic potential for neurological disorders such as epilepsy. These microelectrodes provide unique opportunities to study brain activity under normal and various pathological conditions, both in-vivo and in in-vitro, thus furthering the ability to develop drug screening and neuromodulation systems that could accurately record and map the activity of large neural networks over an extended time period.


Assuntos
Encéfalo/fisiologia , Eletrodos Implantados , Microeletrodos , Neurônios/fisiologia , Convulsões/fisiopatologia , Animais , Simulação por Computador , Desenho de Equipamento , Camundongos , Camundongos Endogâmicos C3H , Ratos , Ratos Sprague-Dawley
7.
Sci Rep ; 11(1): 16153, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34373548

RESUMO

Recent animal studies have drawn concerns regarding most commonly used anesthetics and their long-term cytotoxic effects, specifically on the nervous tissue. It is therefore imperative that the search continues for agents that are non-toxic at both the cellular and behavioural level. One such agent appears to be dexmedetomidine (DEX) which has not only been found to be less neurotoxic but has also been shown to protect neurons from cytotoxicity induced by other anesthetic agents. However, DEX's effects on the growth and synaptic connectivity at the individual neuronal level, and the underlying mechanisms have not yet been fully resolved. Here, we tested DEX for its impact on neuronal growth, synapse formation (in vitro) and learning and memory in a rodent model. Rat cortical neurons were exposed to a range of clinically relevant DEX concentrations (0.05-10 µM) and cellular viability, neurite outgrowth, synaptic assembly and mitochondrial morphology were assessed. We discovered that DEX did not affect neuronal viability when used below 10 µM, whereas significant cell death was noted at higher concentrations. Interestingly, in the presence of DEX, neurons exhibited more neurite branching, albeit with no differences in corresponding synaptic puncta formation. When rat pups were injected subcutaneously with DEX 25 µg/kg on postnatal day 7 and again on postnatal day 8, we discovered that this agent did not affect hippocampal-dependent memory in freely behaving animals. Our data demonstrates, for the first time, the non-neurotoxic nature of DEX both in vitro and in vivo in an animal model providing support for its utility as a safer anesthetic agent. Moreover, this study provides the first direct evidence that although DEX is growth permissive, causes mitochondrial fusion and reduces oxygen reactive species production, it does not affect the total number of synaptic connections between the cortical neurons in vitro.


Assuntos
Dexmedetomidina/farmacologia , Aprendizagem/efeitos dos fármacos , Memória/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Anestésicos/farmacologia , Anestésicos/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dexmedetomidina/toxicidade , Feminino , Lobo Frontal/citologia , Lobo Frontal/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Masculino , Dinâmica Mitocondrial/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurônios/citologia , Fármacos Neuroprotetores/farmacologia , Gravidez , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/fisiologia
8.
Cells ; 10(5)2021 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-34065662

RESUMO

Menin, a product of MEN1 (multiple endocrine neoplasia type 1) gene is an important regulator of tissue development and maintenance; its perturbation results in multiple tumors-primarily of the endocrine tissue. Despite its abundance in the developing central nervous system (CNS), our understanding of menin's role remains limited. Recently, we discovered menin to play an important role in cholinergic synaptogenesis in the CNS, whereas others have shown its involvement in learning, memory, depression and apoptosis. For menin to play these important roles in the CNS, its expression patterns must be corroborated with other components of the synaptic machinery imbedded in the learning and memory centers; this, however, remains to be established. Here, we report on the spatio-temporal expression patterns of menin, which we found to exhibit dynamic distribution in the murine brain from early development, postnatal period to a fully-grown adult mouse brain. We demonstrate here that menin expression is initially widespread in the brain during early embryonic stages, albeit with lower intensity, as determined by immunohistochemistry and gene expression. With the progression of development, however, menin expression became highly localized to learning, memory and cognition centers in the CNS. In addition to menin expression patterns throughout development, we provide the first direct evidence for its co-expression with nicotinic acetylcholine, glutamate and GABA (gamma aminobutyric acid) receptors-concomitant with the expression of both postsynaptic (postsynaptic density protein PSD-95) and presynaptic (synaptotagamin) proteins. This study is thus the first to provide detailed analysis of spatio-temporal patterns of menin expression from initial CNS development to adulthood. When taken together with previously published studies, our data underscore menin's importance in the cholinergic neuronal network assembly underlying learning, memory and cognition.


Assuntos
Encéfalo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL
9.
Sci Rep ; 11(1): 4567, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33633281

RESUMO

Anesthetics are deemed necessary for all major surgical procedures. However, they have also been found to exert neurotoxic effects when tested on various experimental models, but the underlying mechanisms remain unknown. Earlier studies have implicated mitochondrial fragmentation as a potential target of anesthetic-induced toxicity, although clinical strategies to protect their structure and function remain sparse. Here, we sought to determine if preserving mitochondrial networks with a non-toxic, short-life synthetic peptide-P110, would protect cortical neurons against both inhalational and intravenous anesthetic-induced neurotoxicity. This study provides the first direct and comparative account of three key anesthetics (desflurane, propofol, and ketamine) when used under identical conditions, and demonstrates their impact on neonatal, rat cortical neuronal viability, neurite outgrowth and synaptic assembly. Furthermore, we discovered that inhibiting Fis1-mediated mitochondrial fission reverses anesthetic-induced aberrations in an agent-specific manner. This study underscores the importance of designing mitigation strategies invoking mitochondria-mediated protection from anesthetic-induced toxicity in both animals and humans.


Assuntos
Anestésicos Gerais/efeitos adversos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Peptídeos/farmacologia , Sinapses/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Células Cultivadas , Imunofluorescência , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fármacos Neuroprotetores/síntese química , Peptídeos/síntese química , Propofol/efeitos adversos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-32792935

RESUMO

Taurine is a sulfur-containing amino acid that is widely expressed throughout the human brain, heart, retina, and muscle tissues. Taurine deficiency is associated with cardiomyopathy, renal dysfunction, abnormalities of the developing nervous system, and epilepsy which suggests a role specific to excitable tissues. Like vertebrates, invertebrates maintain high levels of taurine during embryonic and larval development, which decline during aging, indicating a potential developmental role. Notwithstanding its extensive presence throughout, taurine's precise role/s during early brain development, function, and repair remains largely unknown in both vertebrate and invertebrate. Here, we investigated whether taurine affects neurite outgrowth, synapse formation, and synaptic transmission between postnatal day 0 rat cortical neurons in vitro, whereas its synaptogenic role was tested more directly using the Lymnaea soma-soma synapse model. We provide direct evidence that when applied at physiological concentrations, taurine exerts a significant neurotrophic effect on neuritic outgrowth and thickness of neurites as well as the expression of synaptic puncta as revealed by immunostaining of presynaptic synaptophysin and postsynaptic PSD95 proteins in rat cortical neurons, indicating direct involvement in synapse development. To demonstrate taurine's direct effects on neurons in the absence of glia and other confounding factors, we next exploited individually identified pre- and postsynaptic neurons from the mollusk Lymnaea stagnalis. We found that taurine increased both the incidence of synapse formation (percent of cells that form synapses) and the efficacy of synaptic transmission between the paired neurons. This effect was comparable, but not additive, to Lymnaea trophic factor-induced synaptogenesis. This study thus provides direct morphological and functional evidence that taurine plays an important role in neurite outgrowth, synaptogenesis, and synaptic transmission during the early stages of brain development and that this role is conserved across both vertebrate and invertebrate species.

11.
Sci Rep ; 10(1): 13526, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32782285

RESUMO

Many neurons concurrently and/or differentially release multiple neurotransmitter substances to selectively modulate the activity of distinct postsynaptic targets within a network. However, the molecular mechanisms that produce synaptic heterogeneity by regulating the cotransmitter release characteristics of individual presynaptic terminals remain poorly defined. In particular, we know little about the regulation of neuropeptide corelease, despite the fact that they mediate synaptic transmission, plasticity and neuromodulation. Here, we report that an identified Lymnaea neuron selectively releases its classical small molecule and peptide neurotransmitters, acetylcholine and FMRFamide-derived neuropeptides, to differentially influence the activity of distinct postsynaptic targets that coordinate cardiorespiratory behaviour. Using a combination of electrophysiological, molecular, and pharmacological approaches, we found that neuropeptide cotransmitter release was regulated by cross-talk between extrinsic neurotrophic factor signaling and target-specific retrograde arachidonic acid signaling, which converged on modulation of glycogen synthase kinase 3. In this context, we identified a novel role for the Lymnaea synaptophysin homologue as a specific and synapse-delimited inhibitory regulator of peptide neurotransmitter release. This study is among the first to define the cellular and molecular mechanisms underlying the differential release of cotransmitter substances from individual presynaptic terminals, which allow for context-dependent tuning and plasticity of the synaptic networks underlying patterned motor behaviour.


Assuntos
Lymnaea/metabolismo , Fatores de Crescimento Neural/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Neurotransmissores/metabolismo , Sinapses/fisiologia , Transmissão Sináptica , Animais , Células Cultivadas , Lymnaea/genética , Fatores de Crescimento Neural/genética , Terminações Pré-Sinápticas/fisiologia , Receptores Nicotínicos/metabolismo
12.
J Neurophysiol ; 122(2): 760-787, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31242059

RESUMO

Modern anesthetic compounds and advanced monitoring tools have revolutionized the field of medicine, allowing for complex surgical procedures to occur safely and effectively. Faster induction times and quicker recovery periods of current anesthetic agents have also helped reduce health care costs significantly. Moreover, extensive research has allowed for a better understanding of anesthetic modes of action, thus facilitating the development of more effective and safer compounds. Notwithstanding the realization that anesthetics are a prerequisite to all surgical procedures, evidence is emerging to support the notion that exposure of the developing brain to certain anesthetics may impact future brain development and function. Whereas the data in support of this postulate from human studies is equivocal, the vast majority of animal research strongly suggests that anesthetics are indeed cytotoxic at multiple brain structure and function levels. In this review, we first highlight various modes of anesthetic action and then debate the evidence of harm from both basic science and clinical studies perspectives. We present evidence from animal and human studies vis-à-vis the possible detrimental effects of anesthetic agents on both the young developing and the elderly aging brain while discussing potential ways to mitigate these effects. We hope that this review will, on the one hand, invoke debate vis-à-vis the evidence of anesthetic harm in young children and the elderly, and on the other hand, incentivize the search for better and less toxic anesthetic compounds.


Assuntos
Envelhecimento/efeitos dos fármacos , Anestésicos Gerais/farmacologia , Anestésicos Locais/farmacologia , Encéfalo/efeitos dos fármacos , Desenvolvimento Infantil/efeitos dos fármacos , Adulto , Idoso , Anestésicos Gerais/toxicidade , Anestésicos Locais/toxicidade , Animais , Encéfalo/crescimento & desenvolvimento , Pré-Escolar , Feminino , Humanos , Gravidez
13.
J Neurophysiol ; 121(4): 1381-1397, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30759043

RESUMO

The precise patterns of neuronal assembly during development determine all functional outputs of a nervous system; these may range from simple reflexes to learning, memory, cognition, etc. To understand how brain functions and how best to repair it after injury, disease, or trauma, it is imperative that we first seek to define fundamental steps mediating this neuronal assembly. To acquire the sophisticated ensemble of highly specialized networks seen in a mature brain, all proliferated and migrated neurons must extend their axonal and dendritic processes toward targets, which are often located at some distance. Upon contact with potential partners, neurons must undergo dramatic structural changes to become either a pre- or a postsynaptic neuron. This connectivity is cemented through specialized structures termed synapses. Both structurally and functionally, the newly formed synapses are, however, not static as they undergo consistent changes in order for an animal to meet its behavioral needs in a changing environment. These changes may be either in the form of new synapses or an enhancement of their synaptic efficacy, referred to as synaptic plasticity. Thus, synapse formation is not restricted to neurodevelopment; it is a process that remains active throughout life. As the brain ages, either the lack of neuronal activity or cell death render synapses dysfunctional, thus giving rise to neurodegenerative disorders. This review seeks to highlight salient steps that are involved in a neuron's journey, starting with the establishment, maturation, and consolidation of synapses; we particularly focus on identifying key players involved in the synaptogenic program. We hope that this endeavor will not only help the beginners in this field to understand how brain networks are assembled in the first place but also shed light on various neurodevelopmental, neurological, neurodegenerative, and neuropsychiatric disorders that involve synaptic inactivity or dysfunction.


Assuntos
Doenças Neurodegenerativas/etiologia , Transtornos do Neurodesenvolvimento/etiologia , Neurogênese , Sinapses/fisiologia , Animais , Humanos , Plasticidade Neuronal , Sinapses/patologia
14.
Front Physiol ; 9: 220, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29666582

RESUMO

Octopus vulgaris is a unique model system for studying complex behaviors in animals. It has a large and centralized nervous system made up of lobes that are involved in controlling various sophisticated behaviors. As such, it may be considered as a model organism for untangling the neuronal mechanisms underlying behaviors-including learning and memory. However, despite considerable efforts, Octopus lags behind its other counterparts vis-à-vis its utility in deciphering the cellular, molecular and synaptic mechanisms underlying various behaviors. This study represents a novel approach designed to establish a neuronal cell culture protocol that makes this species amenable to further exploitation as a model system. Here we developed a protocol that enables dissociation of neurons from two specific Octopus' brain regions, the vertical-superior frontal system and the optic lobes, which are involved in memory, learning, sensory integration and adult neurogenesis. In particular, cells dissociated with enzyme papain and cultured on Poly-D-Lysine-coated dishes with L15-medium and fetal bovine serum yielded high neuronal survival, axon growth, and re-growth after injury. This model was also explored to define optimal culture conditions and to demonstrate the regenerative capabilities of adult Octopus neurons after axotomy. This study thus further underscores the importance of Octopus neurons as a model system for deciphering fundamental molecular and cellular mechanism of complex brain function and underlying behaviors.

15.
ACS Chem Neurosci ; 9(8): 1928-1938, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29528213

RESUMO

All functions of the nervous system are contingent upon the precise organization of neuronal connections that are initially patterned during development, and then continually modified throughout life. Determining the mechanisms that specify the formation and functional modulation of synaptic circuitry are critical to advancing both our fundamental understanding of the nervous system as well as the various neurodevelopmental, neurological, neuropsychiatric, and neurodegenerative disorders that are met in clinical practice when these processes go awry. Defining the cellular and molecular mechanisms underlying nervous system development, function, and pathology has proven challenging, due mainly to the complexity of the vertebrate brain. Simple model system approaches with invertebrate preparations, on the other hand, have played pivotal roles in elucidating the fundamental mechanisms underlying the formation and plasticity of individual synapses, and the contributions of individual neurons and their synaptic connections that underlie a variety of behaviors, and learning and memory. In this Review, we discuss the experimental utility of the invertebrate mollusc Lymnaea stagnalis, with a particular emphasis on in vitro cell culture, semi-intact and in vivo preparations, which enable molecular and electrophysiological identification of the cellular and molecular mechanisms governing the formation, plasticity, and specificity of individual synapses at a single-neuron or single-synapse resolution.


Assuntos
Lymnaea/citologia , Lymnaea/metabolismo , Animais , Comportamento Animal/fisiologia , Equipamentos e Provisões Elétricas , Desenho de Equipamento , Modelos Animais , Sinapses/metabolismo
16.
Front Physiol ; 9: 1900, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687118

RESUMO

[This corrects the article DOI: 10.3389/fphys.2018.00220.].

17.
Sci Rep ; 7(1): 1768, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28496137

RESUMO

In the central nervous system (CNS), cholinergic transmission induces synaptic plasticity that is required for learning and memory. However, our understanding of the development and maintenance of cholinergic circuits is limited, as the factors regulating the expression and clustering of neuronal nicotinic acetylcholine receptors (nAChRs) remain poorly defined. Recent studies from our group have implicated calpain-dependent proteolytic fragments of menin, the product of the MEN1 tumor suppressor gene, in coordinating the transcription and synaptic clustering of nAChRs in invertebrate central neurons. Here, we sought to determine whether an analogous cholinergic mechanism underlies menin's synaptogenic function in the vertebrate CNS. Our data from mouse primary hippocampal cultures demonstrate that menin and its calpain-dependent C-terminal fragment (C-menin) regulate the subunit-specific transcription and synaptic clustering of neuronal nAChRs, respectively. MEN1 knockdown decreased nAChR α5 subunit expression, the clustering of α7 subunit-containing nAChRs at glutamatergic presynaptic terminals, and nicotine-induced presynaptic facilitation. Moreover, the number and function of glutamatergic synapses was unaffected by MEN1 knockdown, indicating that the synaptogenic actions of menin are specific to cholinergic regulation. Taken together, our results suggest that the influence of menin on synapse formation and synaptic plasticity occur via modulation of nAChR channel subunit composition and functional clustering.


Assuntos
Terminações Pré-Sinápticas/metabolismo , Proteínas Proto-Oncogênicas/genética , Células Piramidais/fisiologia , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Transmissão Sináptica , Animais , Calpaína , Células Cultivadas , Camundongos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteólise , Proteínas Proto-Oncogênicas/metabolismo , Receptores Nicotínicos/química , Ativação Transcricional
18.
Drug Chem Toxicol ; 40(2): 241-249, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27252089

RESUMO

BACKGROUND: The search for agents that bring about faster induction and quicker recovery in the operating room have yielded numerous anesthetics whose mechanisms of action and potential toxic side effects remain unknown, especially in the young and aging brain. OBJECTIVE: Taking advantage of our clinical and basic science expertise, here we subject the reader to an interesting perspective vis-à-vis the current applications of general anesthetics, and present evidence for their neurotoxic effects on the developing and elderly brains. RESULTS: Recent studies have called into question the safety of general anesthetics, especially with regards to potentially significant detrimental impacts on the developing brains of young children, and cognitive decline in the elderly - often following multiple episodes of anesthesia. Despite accumulating evidence from animal studies demonstrating that general anesthesia leads to neurodegeneration and cognitive impairment, to date a clear consensus on the impact of anesthetics in humans remains elusive. Because a direct impact of anesthetics on human neuronal networks is often difficult to deduce experimentally, most laboratories have resorted to animal models - albeit with limited success in translating these findings back to the clinic. Moreover, the precise mechanisms that lead to potential cognitive, learning, and memory decline in young and elderly patients also remain to be fully defined. CONCLUSIONS: This review will focus primarily on the cytotoxic effects of anesthetics, and offer some practical resolutions that may attenuate their long-term harm. An urgent need for studies on animal models and an increased focus on highly controlled prospective epidemiological studies is also reinforced.


Assuntos
Anestesia Geral/efeitos adversos , Anestésicos Gerais/efeitos adversos , Encéfalo/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Fatores Etários , Envelhecimento/patologia , Envelhecimento/psicologia , Anestesia Geral/métodos , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Criança , Desenvolvimento Infantil/efeitos dos fármacos , Pré-Escolar , Cognição/efeitos dos fármacos , Transtornos Cognitivos/induzido quimicamente , Transtornos Cognitivos/psicologia , Humanos , Deficiências da Aprendizagem/induzido quimicamente , Deficiências da Aprendizagem/psicologia , Memória/efeitos dos fármacos , Pessoa de Meia-Idade , Síndromes Neurotóxicas/patologia , Síndromes Neurotóxicas/fisiopatologia , Síndromes Neurotóxicas/psicologia , Medição de Risco , Fatores de Risco
19.
Sci Rep ; 6: 34553, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27731326

RESUMO

Our inability to accurately monitor individual neurons and their synaptic activity precludes fundamental understanding of brain function under normal and various pathological conditions. However, recent breakthroughs in micro- and nano-scale fabrication processes have advanced the development of neuro-electronic hybrid technology. Among such devices are three-dimensional and planar electrodes, offering the advantages of either high fidelity or longer-term recordings respectively. Here, we present the next generation of planar microelectrode arrays with "nano-edges" that enable long-term (≥1 month) and high fidelity recordings at a resolution 15 times higher than traditional planar electrodes. This novel technology enables better understanding of brain function and offers a tremendous opportunity towards the development of future bionic hybrids and drug discovery devices.


Assuntos
Sinapses Elétricas/fisiologia , Microeletrodos , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Animais , Biomimética/métodos , Células Cultivadas , Estimulação Elétrica/instrumentação , Estimulação Elétrica/métodos , Lymnaea , Modelos Neurológicos , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Neurônios/citologia
20.
Sci Rep ; 6: 31779, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27538741

RESUMO

Synapse formation and plasticity depend on nuclear transcription and site-specific protein targeting, but the molecular mechanisms that coordinate these steps have not been well defined. The MEN1 tumor suppressor gene, which encodes the protein menin, is known to induce synapse formation and plasticity in the CNS. This synaptogenic function has been conserved across evolution, however the underlying molecular mechanisms remain unidentified. Here, using central neurons from the invertebrate Lymnaea stagnalis, we demonstrate that menin coordinates subunit-specific transcriptional regulation and synaptic clustering of nicotinic acetylcholine receptors (nAChR) during neurotrophic factor (NTF)-dependent excitatory synaptogenesis, via two proteolytic fragments generated by calpain cleavage. Whereas menin is largely regarded as a nuclear protein, our data demonstrate a novel cytoplasmic function at central synapses. Furthermore, this study identifies a novel synaptogenic mechanism in which a single gene product coordinates the nuclear transcription and postsynaptic targeting of neurotransmitter receptors through distinct molecular functions of differentially localized proteolytic fragments.


Assuntos
Lymnaea/metabolismo , Neurônios/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores de Neurotransmissores/biossíntese , Sinapses/metabolismo , Transcrição Gênica/fisiologia , Animais , Lymnaea/genética , Neurônios/citologia , Proteínas Proto-Oncogênicas/genética , Receptores de Neurotransmissores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA