Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35562884

RESUMO

MicroRNAs have been projected as promising tools for diagnostic and prognostic purposes in cancer. More recently, they have been highlighted as RNA therapeutic targets for cancer therapy. Though miRs perform a generic function of post-transcriptional gene regulation, their utility in RNA therapeutics mostly relies on their biochemical nature and their assembly with other macromolecules. Release of extracellular miRs is broadly categorized into two different compositions, namely exosomal (extracellular vesicles) and non-exosomal. This nature of miRs not only affects the uptake into target cells but also poses a challenge and opportunity for RNA therapeutics in cancer. By virtue of their ability to act as mediators of intercellular communication in the tumor microenvironment, extracellular miRs perform both, depending upon the target cell and target landscape, pro- and anti-tumor functions. Tumor-derived miRs mostly perform pro-tumor functions, whereas host cell- or stroma-derived miRs are involved in anti-tumor activities. This review deals with the recent understanding of exosomal and non-exosomal miRs in the tumor microenvironment, as a tool for pro- and anti-tumor activity and prospective exploit options for cancer therapy.


Assuntos
Exossomos , MicroRNAs , Neoplasias , Exossomos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/uso terapêutico , Neoplasias/genética , Neoplasias/terapia , Microambiente Tumoral/genética
2.
Biology (Basel) ; 11(3)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35336722

RESUMO

Macrophages constitute a major part of the tumor-infiltrating immune cells. Within the tumor microenvironment, they acquire an alternatively activated, tumor-supporting phenotype. Factors released by tumor cells are crucial for the recruitment of tumor-associated macrophages. In the present project, we aimed to understand the role of hsa-miR-200c-3p (miR-200c) in the interplay between tumor cells and macrophages. To this end, we employed a coculture system of MCF7 breast tumor cells and primary human macrophages and observed the transfer of miR-200c from apoptotic tumor cells to macrophages, which required intact CD36 receptor in macrophages. We further comprehensively determined miR-200c targets in macrophages by mRNA-sequencing and identified numerous migration-associated mRNAs to be downregulated by miR-200c. Consequently, miR-200c attenuated macrophage infiltration into 3-dimensional tumor spheroids. miR-200c-mediated reduction in infiltration further correlated with a miR-200c migration signature comprised of the four miR-200c-repressed, predicted targets PPM1F, RAB11FIB2, RDX, and MSN.

3.
Theranostics ; 11(15): 7570-7588, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34158867

RESUMO

Background: Glucose metabolism in the tumor-microenvironment is a fundamental hallmark for tumor growth and intervention therein remains an attractive option for anti-tumor therapy. Whether tumor-derived factors such as microRNAs (miRs) regulate glucose metabolism in stromal cells, especially in tumor-associated macrophages (TAMs), to hijack them for trophic support, remains elusive. Methods: Ago-RIP-Seq identified macrophage lactate dehydrogenase B (LDHB) as a target of tumor-derived miR-375 in both 2D/3D cocultures and in murine TAMs from a xenograft mouse model. The prognostic value was analyzed by ISH and multiplex IHC of breast cancer patient tissues. Functional consequences of the miR-375-LDHB axis in TAMs were investigated upon mimic/antagomir treatment by live metabolic flux assays, GC/MS, qPCR, Western blot, lentiviral knockdown and FACS. The therapeutic potential of a combinatorial miR-375-decoy/simvastatin treatment was validated by live cell imaging. Results: Macrophage LDHB decreased in murine and human breast carcinoma. LDHB downregulation increase aerobic glycolysis and lactagenesis in TAMs in response to tumor-derived miR-375. Lactagenesis reduced fatty acid synthesis but activated SREBP2, which enhanced cholesterol biosynthesis in macrophages. LDHB downregulation skewed TAMs to function as a lactate and sterol/oxysterol source for the proliferation of tumor cells. Restoring of LDHB expression potentiated inhibitory effects of simvastatin on tumor cell proliferation. Conclusion: Our findings identified a crucial role of LDHB in macrophages and established tumor-derived miR-375 as a novel regulator of macrophage metabolism in breast cancer, which might pave the way for strategies of combinatorial cancer cell/stroma cell interventions.


Assuntos
Neoplasias da Mama/metabolismo , L-Lactato Desidrogenase/metabolismo , Macrófagos/enzimologia , Neoplasias Mamárias Animais/metabolismo , Microambiente Tumoral , Animais , Neoplasias da Mama/patologia , Feminino , Humanos , Isoenzimas/metabolismo , Células MCF-7 , Neoplasias Mamárias Animais/patologia
4.
Int J Mol Sci ; 22(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672261

RESUMO

The tumor-microenvironment (TME) is an amalgamation of various factors derived from malignant cells and infiltrating host cells, including cells of the immune system. One of the important factors of the TME is microRNAs (miRs) that regulate target gene expression at a post transcriptional level. MiRs have been found to be dysregulated in tumor as well as in stromal cells and they emerged as important regulators of tumorigenesis. In fact, miRs regulate almost all hallmarks of cancer, thus making them attractive tools and targets for novel anti-tumoral treatment strategies. Tumor to stroma cell cross-propagation of miRs to regulate protumoral functions has been a salient feature of the TME. MiRs can either act as tumor suppressors or oncogenes (oncomiRs) and both miR mimics as well as miR inhibitors (antimiRs) have been used in preclinical trials to alter cancer and stromal cell phenotypes. Owing to their cascading ability to regulate upstream target genes and their chemical nature, which allows specific pharmacological targeting, miRs are attractive targets for anti-tumor therapy. In this review, we cover a recent update on our understanding of dysregulated miRs in the TME and provide an overview of how these miRs are involved in current cancer-therapeutic approaches from bench to bedside.


Assuntos
Antagomirs/farmacologia , MicroRNAs , Neoplasias/genética , Neoplasias/terapia , Microambiente Tumoral/genética , Animais , Ensaios Clínicos como Assunto , Sistemas de Liberação de Medicamentos/métodos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Imunoterapia/métodos , Terapia de Alvo Molecular , Neoplasias/patologia , Oligonucleotídeos/administração & dosagem , Microambiente Tumoral/efeitos dos fármacos
5.
Int J Mol Sci ; 21(13)2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630814

RESUMO

Recent studies suggested an important contribution of sphingosine-1-phospate (S1P) signaling via its specific receptors (S1PRs) in the production of pro-inflammatory mediators such as Interleukin (IL)-1ß in cancer and inflammation. In an inflammation-driven cancer setting, we previously reported that myeloid S1PR1 signaling induces IL-1ß production by enhancing NLRP3 (NOD-, LRR- and Pyrin Domain-Containing Protein 3) inflammasome activity. However, the autocrine role of S1P and enzymes acting on the S1P rheostat in myeloid cells are unknown. Using human and mouse macrophages with pharmacological or genetic intervention we explored the relative contribution of sphingosine kinases (SPHKs) in NLRP3 inflammasome activity regulation. We noticed redundancy in SPHK1 and SPHK2 activities towards macrophage NLRP3 inflammasome transcriptional induction and IL-1ß secretion. However, pharmacological blockade of both kinases in unison completely abrogated NLRP3 inflammasome induction and IL-1ß secretion. Interestingly, human and mouse macrophages demonstrate varied responses towards SPHKs inhibition and IL-1ß secretion. Clinical datasets of renal cell carcinoma and psoriasis patients showed a positive correlation between enzymes affecting the S1P rheostat with NLRP3 inflammasome components expression, which corroborates our finding. Our data provide a better understanding on the role of SPHKs and de novo synthesized S1P in macrophage NLRP3 inflammasome activation.


Assuntos
Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Proteínas de Transporte/metabolismo , Caspase 1/metabolismo , Células Cultivadas , Humanos , Inflamassomos/genética , Inflamação/metabolismo , Lisofosfolipídeos/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Transdução de Sinais , Esfingosina/análogos & derivados , Esfingosina/metabolismo
6.
Cancers (Basel) ; 12(4)2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32276464

RESUMO

A myriad of signaling molecules in a heuristic network of the tumor microenvironment (TME) pose a challenge and an opportunity for novel therapeutic target identification in human cancers. MicroRNAs (miRs), due to their ability to affect signaling pathways at various levels, take a prominent space in the quest of novel cancer therapeutics. The role of miRs in cancer initiation, progression, as well as in chemoresistance, is being increasingly investigated. The canonical function of miRs is to target mRNAs for post-transcriptional gene silencing, which has a great implication in first-order regulation of signaling pathways. However, several reports suggest that miRs also perform non-canonical functions, partly due to their characteristic non-coding small RNA nature. Examples emerge when they act as ligands for toll-like receptors or perform second-order functions, e.g., to regulate protein translation and interactions. This review is a compendium of recent advancements in understanding the role of miRs in cancer signaling and focuses on the role of miRs as novel regulators of the signaling pathway in the TME.

7.
Cells ; 8(12)2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766495

RESUMO

MicroRNAs (miRs) significantly contribute to the regulation of gene expression, by virtue of their ability to interact with a broad, yet specific set of target genes. MiRs are produced and released by almost every cell type and play an important role in horizontal gene regulation in the tumor microenvironment (TME). In the TME, both tumor and stroma cells cross-communicate via diverse factors including miRs, which are taking central stage as a therapeutic target of anti-tumor therapy. One of the immune escape strategies adopted by tumor cells is to release miRs as a Trojan horse to hijack circulating or tumor-localized monocytes/macrophages to tune them for pro-tumoral functions. On the other hand, macrophage-derived miRs exert anti-tumor functions. The transfer of miRs from host to recipient cells depends on the supramolecular structure and composition of miR carriers, which determine the distinct uptake mechanism by recipient cells. In this review, we provide a recent update on the miR-mediated crosstalk between tumor cells and macrophages and their mode of uptake in the TME.


Assuntos
Macrófagos/metabolismo , MicroRNAs/genética , Microambiente Tumoral/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Macrófagos/imunologia , Neoplasias/genética , Neoplasias/metabolismo , Transdução de Sinais/genética
8.
Cells ; 8(8)2019 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-31357710

RESUMO

The bioactive lipid sphingosine-1-phosphate (S1P), along with its receptors, modulates lymphocyte trafficking and immune responses to regulate skin inflammation. Macrophages are important in the pathogenesis of psoriasiform skin inflammation and express various S1P receptors. How they respond to S1P in skin inflammation remains unknown. We show that myeloid specific S1P receptor 1 (S1PR1) deletion enhances early inflammation in a mouse model of imiquimod-induced psoriasis, without altering the immune cell infiltrate. Mechanistically, myeloid S1PR1 deletion altered the formation of IL-1ß, VEGF-A, and VEGF-C, and their receptors' expression in psoriatic skin, which subsequently lead to reciprocal regulation of neoangiogenesis and neolymphangiogenesis. Experimental findings were corroborated in human clinical datasets and in knockout macrophages in vitro. Increased blood vessel but reduced lymph vessel density may explain the exacerbated inflammatory phenotype in conditional knockout mice. These findings assign a novel role to macrophage S1PR1 and provide a rationale for therapeutically targeting local S1P during skin inflammation.


Assuntos
Dermatite/metabolismo , Linfangiogênese , Macrófagos/metabolismo , Neovascularização Fisiológica , Transdução de Sinais , Receptores de Esfingosina-1-Fosfato/metabolismo , Animais , Biomarcadores , Dermatite/etiologia , Dermatite/patologia , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Imunofenotipagem , Linfangiogênese/genética , Camundongos , Camundongos Knockout , Neovascularização Fisiológica/genética , Receptores de Esfingosina-1-Fosfato/genética
9.
Nat Commun ; 10(1): 1135, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30850595

RESUMO

Tumor-immune cell interactions shape the immune cell phenotype, with microRNAs (miRs) being crucial components of this crosstalk. How they are transferred and how they affect their target landscape, especially in tumor-associated macrophages (TAMs), is largely unknown. Here we report that breast cancer cells have a high constitutive expression of miR-375, which is released as a non-exosome entity during apoptosis. Deep sequencing of the miRome pointed to enhanced accumulation of miR-375 in TAMs, facilitated by the uptake of tumor-derived miR-375 via CD36. In macrophages, miR-375 directly targets TNS3 and PXN to enhance macrophage migration and infiltration into tumor spheroids and in tumors of a xenograft mouse model. In tumor cells, miR-375 regulates CCL2 expression to increase recruitment of macrophages. Our study provides evidence for miR transfer from tumor cells to TAMs and identifies miR-375 as a crucial regulator of phagocyte infiltration and the subsequent development of a tumor-promoting microenvironment.


Assuntos
Neoplasias da Mama/genética , Antígenos CD36/genética , Regulação Neoplásica da Expressão Gênica , Macrófagos/imunologia , MicroRNAs/genética , Animais , Apoptose , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Antígenos CD36/imunologia , Movimento Celular , Quimiocina CCL2/genética , Quimiocina CCL2/imunologia , Técnicas de Cocultura , Feminino , Perfilação da Expressão Gênica , Humanos , Células MCF-7 , Macrófagos/patologia , Camundongos , Camundongos Nus , MicroRNAs/imunologia , Paxilina/genética , Paxilina/imunologia , Fenótipo , Transdução de Sinais , Esferoides Celulares/imunologia , Esferoides Celulares/patologia , Tensinas/genética , Tensinas/imunologia , Carga Tumoral , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Oncoimmunology ; 7(10): e1494110, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30288360

RESUMO

Macrophages in the tumor microenvironment respond to complex cytokine signals. How these responses shape the phenotype of tumor-associated macrophages (TAMs) is incompletely understood. Here we explored how cytokines of the tumor milieu, interleukin (IL)-6 and IL-4, interact to influence target gene expression in primary human monocyte-derived macrophages (hMDMs). We show that dual stimulation with IL-4 and IL-6 synergistically modified gene expression. Among the synergistically induced genes are several targets with known pro-tumorigenic properties, such as CC-chemokine ligand 18 (CCL18), transforming growth factor alpha (TGFA) or CD274 (programmed cell death 1 ligand 1 (PD-L1)). We found that transcription factors of the signal transducer and activator of transcription (STAT) family, STAT3 and STAT6 bind regulatory regions of synergistically induced genes in close vicinity. STAT3 and STAT6 co-binding further induces the basic leucine zipper ATF-like transcription factor (BATF), which participates in synergistic induction of target gene expression. Functional analyses revealed increased MCF-7 and MDA-MB 231 tumor cell motility in response to conditioned media from co-treated hMDMs compared to cells incubated with media from single cytokine-treated hMDMs. Flow cytometric analysis of T cell populations upon co-culture with hMDMs polarized by different cytokines indicated that dual stimulation promoted immunosuppressive properties of hMDMs in a PD-L1-dependent manner. Analysis of clinical data revealed increased expression of BATF together with TAM markers in tumor stroma of breast cancer patients as compared to normal breast tissue stroma. Collectively, our findings suggest that IL-4 and IL-6 cooperate to alter the human macrophage transcriptome, endowing hMDMs with pro-tumorigenic properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA