Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
NPJ Vaccines ; 7(1): 161, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36513697

RESUMO

Coronavirus disease-19 (Covid-19) pandemic have demonstrated the importantance of vaccines in disease prevention. Self-amplifying mRNA vaccines could be another option for disease prevention if demonstrated to be safe and immunogenic. Phase 1 of this randomized, double-blinded, placebo-controlled trial (N = 42) assessed the safety, tolerability, and immunogenicity in healthy young and older adults of ascending levels of one-dose ARCT-021, a self-amplifying mRNA vaccine against Covid-19. Phase 2 (N = 64) tested two-doses of ARCT-021 given 28 days apart. During phase 1, ARCT-021 was well tolerated up to one 7.5 µg dose and two 5.0 µg doses. Local solicited AEs, namely injection-site pain and tenderness were more common in ARCT-021vaccinated, while systemic solicited AEs, mainly fatigue, headache and myalgia were reported in 62.8% and 46.4% of ARCT-021 and placebo recipients, respectively. Seroconversion rate for anti-S IgG was 100% in all cohorts, except for the 1 µg one-dose in younger adults and the 7.5 µg one-dose in older adults. Anti-S IgG and neutralizing antibody titers showed a general increase with increasing dose, and overlapped with titers in Covid-19 convalescent patients. T-cell responses were also observed in response to stimulation with S-protein peptides. Taken collectively, ARCT-021 is immunogenic and has favorable safety profile for further development.

2.
NPJ Vaccines ; 7(1): 154, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443317

RESUMO

Remarkable potency has been demonstrated for mRNA vaccines in reducing the global burden of the ongoing COVID-19 pandemic. An alternative form of the mRNA vaccine is the self-amplifying mRNA (sa-mRNA) vaccine, which encodes an alphavirus replicase that self-amplifies the full-length mRNA and SARS-CoV-2 spike (S) transgene. However, early-phase clinical trials of sa-mRNA COVID-19 vaccine candidates have questioned the potential of this platform to develop potent vaccines. We examined the immune gene response to a candidate sa-mRNA vaccine against COVID-19, ARCT-021, and compared our findings to the host response to other forms of vaccines. In blood samples from healthy volunteers that participated in a phase I/II clinical trial, greater induction of transcripts involved in Toll-like receptor (TLR) signalling, antigen presentation and complement activation at 1 day post-vaccination was associated with higher anti-S antibody titers. Conversely, transcripts involved in T-cell maturation at day 7 post-vaccination informed the magnitude of eventual S-specific T-cell responses. The transcriptomic signature for ARCT-021 vaccination strongly correlated with live viral vector vaccines, adjuvanted vaccines and BNT162b2 1 day post-vaccination. Moreover, the ARCT-021 signature correlated with day 7 YF17D live-attenuated vaccine transcriptomic responses. Altogether, our findings show that sa-mRNA vaccination induces innate immune responses that are associated with the development of adaptive immunity from other forms of vaccines, supporting further development of this vaccine platform for clinical application.

3.
Water Res ; 223: 118904, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36007397

RESUMO

Arboviral diseases are caused by a group of viruses spread by the bite of infected arthropods. Amongst these, dengue, Zika, west nile fever and yellow fever cause the greatest economic and social impact. Arboviral epidemics have increased in frequency, magnitude and geographical extent over the past decades and are expected to continue increasing with climate change and expanding urbanisation. Arboviral prevalence is largely underestimated, as most infections are asymptomatic, nevertheless existing surveillance systems are based on passive reporting of loosely defined clinical syndromes with infrequent laboratory confirmation. Wastewater-based surveillance (WBS), which has been demonstrated to be useful for monitoring diseases with significant asymptomatic populations including COVID19 and polio, could be a useful complement to arboviral surveillance. We review the current state of knowledge and identify key factors that affect the feasibility of monitoring arboviral diseases by WBS to include viral shedding loads by infected persons, the persistence of shed arboviruses and the efficiency of their recovery from sewage. We provide a simple model on the volume of wastewater that needs to be processed for detection of arboviruses, in face of lower arboviral shedding rates. In all, this review serves to reflect on the key challenges that need to be addressed and overcome for successful implementation of arboviral WBS.


Assuntos
Infecções por Arbovirus , Arbovírus , COVID-19 , Infecção por Zika virus , Zika virus , Infecções por Arbovirus/diagnóstico , Infecções por Arbovirus/epidemiologia , Humanos , Esgotos , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias , Infecção por Zika virus/diagnóstico , Infecção por Zika virus/epidemiologia
4.
PLoS Biol ; 20(5): e3001643, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35639676

RESUMO

Ensuring high vaccination and even booster vaccination coverage is critical in preventing severe Coronavirus Disease 2019 (COVID-19). Among the various COVID-19 vaccines currently in use, the mRNA vaccines have shown remarkable effectiveness. However, systemic adverse events (AEs), such as postvaccination fatigue, are prevalent following mRNA vaccination, and the underpinnings of which are not understood. Herein, we found that higher baseline expression of genes related to T and NK cell exhaustion and suppression were positively correlated with the development of moderately severe fatigue after Pfizer-BioNTech BNT162b2 vaccination; increased expression of genes associated with T and NK cell exhaustion and suppression reacted to vaccination were associated with greater levels of innate immune activation at 1 day postvaccination. We further found, in a mouse model, that altering the route of vaccination from intramuscular (i.m.) to subcutaneous (s.c.) could lessen the pro-inflammatory response and correspondingly the extent of systemic AEs; the humoral immune response to BNT162b2 vaccination was not compromised. Instead, it is possible that the s.c. route could improve cytotoxic CD8 T-cell responses to BNT162b2 vaccination. Our findings thus provide a glimpse of the molecular basis of postvaccination fatigue from mRNA vaccination and suggest a readily translatable solution to minimize systemic AEs.


Assuntos
COVID-19 , Animais , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Fadiga/etiologia , Humanos , Células Matadoras Naturais , Camundongos , RNA Mensageiro/genética , Vacinação/efeitos adversos
5.
Antiviral Res ; 193: 105138, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34246735

RESUMO

The global spread of SARS-CoV-2 has made millions ill with COVID-19 and even more from the economic fallout of this pandemic. Our quest to test new therapeutics and vaccines require small animal models that replicate disease phenotypes seen in COVID-19 cases. Rodent models of SARS-CoV-2 infection thus far have shown mild to moderate pulmonary disease; mortality, if any, has been associated with prominent signs of central nervous system (CNS) infection and dysfunction. Here we describe the isolation of SARS-CoV-2 variants with propensity for either pulmonary or CNS infection. Using a wild-type SARS-CoV-2 isolated from a COVID-19 patient, we first found that infection was lethal in transgenic mice expressing the human angiotensin I-converting enzyme 2 (hACE2). Fortuitously, full genome sequencing of SARS-CoV-2 from the brain and lung of these animals showed genetic differences. Likewise, SARS-CoV-2 isolates from brains and lungs of these also showed differences in plaque morphology. Inoculation of these brain and lung SARS-CoV-2 isolates into new batch of hACE2 mice intra-nasally resulted in lethal CNS and pulmonary infection, respectively. Collectively, our study suggests that genetic variants of SARS-CoV-2 could be used to replicate specific features of COVID-19 for the testing of potential vaccines or therapeutics.


Assuntos
COVID-19/patologia , Modelos Animais de Doenças , Pulmão/patologia , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Animais , Encéfalo/patologia , Encéfalo/virologia , COVID-19/metabolismo , COVID-19/mortalidade , COVID-19/virologia , Feminino , Humanos , Pulmão/virologia , Camundongos , Camundongos Transgênicos , Peptidil Dipeptidase A/metabolismo
6.
Med ; 2(6): 682-688.e4, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33851143

RESUMO

BACKGROUND: RNA vaccines against coronavirus disease 2019 (COVID-19) have demonstrated ∼95% efficacy in phase III clinical trials. Although complete vaccination consisted of 2 doses, the onset of protection for both licensed RNA vaccines was observed as early as 12 days after a single dose. The adaptive immune response that coincides with this onset of protection could represent the necessary elements of immunity against COVID-19. METHODS: Serological and T cell analysis was performed in a cohort of 20 healthcare workers after receiving the first dose of the Pfizer/BioNTech BNT162b2 vaccine. The primary endpoint was the adaptive immune responses detectable at days 7 and 10 after dosing. FINDINGS: Spike-specific T cells and binding antibodies were detectable 10 days after the first dose of the vaccine, in contrast to receptor-blocking and severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) neutralizing antibodies, which were mostly undetectable at this early time point. CONCLUSIONS: Our findings suggest that early T cell and binding antibody responses, rather than either receptor-blocking or virus neutralizing activity, induced early protection against COVID-19. FUNDING: The study was funded by a generous donation from The Hour Glass to support COVID-19 research.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Anticorpos Antivirais , Formação de Anticorpos , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19/uso terapêutico , Humanos , Imunoglobulina G , RNA , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Linfócitos T , Vacinas Sintéticas , Vacinas de mRNA
7.
Viruses ; 12(12)2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276578

RESUMO

Dengue virus (DENV), an arbovirus, strongly activates mast cells (MCs), which are key immune cells for pathogen immune surveillance. In animal models, MCs promote clearance of local peripheral DENV infections but, conversely, also promote pathological vascular leakage when widely activated during systemic DENV infection. Since DENV is a human pathogen, we sought to ascertain whether a similar phenomenon could occur in humans by characterizing the products released by human MCs (huMCs) upon direct (antibody-independent) DENV exposure, using the phenotypically mature huMC line, ROSA. DENV did not productively infect huMCs but prompted huMC release of proteases and eicosanoids and induced a Th1-polarized transcriptional profile. In co-culture and trans-well systems, huMC products activated human microvascular endothelial cells, involving transcription of vasoactive mediators and increased monolayer permeability. This permeability was blocked by MC-stabilizing drugs, or limited by drugs targeting certain MC products. Thus, MC stabilizers are a viable strategy to limit MC-promoted vascular leakage during DENV infection in humans.


Assuntos
Vírus da Dengue/imunologia , Dengue/imunologia , Dengue/metabolismo , Endotélio Vascular/metabolismo , Mastócitos/fisiologia , Células Th1/fisiologia , Ativação Transcricional , Biomarcadores , Permeabilidade Capilar , Degranulação Celular/imunologia , Dengue/virologia , Células Endoteliais , Endotélio Vascular/imunologia , Imunofluorescência , Perfilação da Expressão Gênica , Histocitoquímica , Interações Hospedeiro-Patógeno/imunologia , Humanos , Ativação Linfocitária , Macrófagos/imunologia , Macrófagos/metabolismo , Mastócitos/citologia
8.
Proc Natl Acad Sci U S A ; 117(20): 11038-11047, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32366663

RESUMO

Dengue virus (DENV) is a global health threat, causing repeated epidemics throughout the tropical world. While low herd immunity levels to any one of the four antigenic types of DENV predispose populations to outbreaks, viral genetic determinants that confer greater fitness for epidemic spread is an important but poorly understood contributor of dengue outbreaks. Here we report that positive epistasis between the coding and noncoding regions of the viral genome combined to elicit an epidemiologic fitness phenotype associated with the 1994 DENV2 outbreak in Puerto Rico. We found that five amino acid substitutions in the NS5 protein reduced viral genomic RNA (gRNA) replication rate to achieve a more favorable and relatively more abundant subgenomic flavivirus RNA (sfRNA), a byproduct of host 5'-3' exoribonuclease activity. The resulting increase in sfRNA relative to gRNA levels not only inhibited type I interferon (IFN) expression in infected cells through a previously described mechanism, but also enabled sfRNA to compete with gRNA for packaging into infectious particles. We suggest that delivery of sfRNA to new susceptible cells to inhibit type I IFN induction before gRNA replication and without the need for further de novo sfRNA synthesis could form a "preemptive strike" strategy against DENV.


Assuntos
Regiões 3' não Traduzidas/genética , Vírus da Dengue/genética , Dengue/virologia , Proteínas não Estruturais Virais/genética , Células A549 , Dengue/epidemiologia , Epistasia Genética , Exorribonucleases , Técnicas de Inativação de Genes , Genoma Viral , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Interferon Tipo I/metabolismo , Proteínas Associadas aos Microtúbulos , Mutação , Porto Rico/epidemiologia , RNA Guia de Cinetoplastídeos/metabolismo , Replicação Viral
9.
J Clin Invest ; 129(10): 4180-4193, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31265436

RESUMO

Dengue virus (DENV) infection causes a characteristic pathology in humans involving dysregulation of the vascular system. In some patients with dengue hemorrhagic fever (DHF), vascular pathology can become severe, resulting in extensive microvascular permeability and plasma leakage into tissues and organs. Mast cells (MCs), which line blood vessels and regulate vascular function, are able to detect DENV in vivo and promote vascular leakage. Here, we identified that a MC-derived protease, tryptase, is consequential for promoting vascular permeability during DENV infection, through inducing breakdown of endothelial cell tight junctions. Injected tryptase alone was sufficient to induce plasma loss from the circulation and hypovolemic shock in animals. A potent tryptase inhibitor, nafamostat mesylate, blocked DENV-induced vascular leakage in vivo. Importantly, in two independent human dengue cohorts, tryptase levels correlated with the grade of DHF severity. This study defines an immune mechanism by which DENV can induce vascular pathology and shock.


Assuntos
Permeabilidade Capilar , Vírus da Dengue/metabolismo , Dengue/enzimologia , Endotélio Vascular/enzimologia , Mastócitos/enzimologia , Choque/enzimologia , Junções Íntimas/metabolismo , Triptases/metabolismo , Animais , Benzamidinas , Linhagem Celular , Dengue/tratamento farmacológico , Dengue/patologia , Dengue/virologia , Endotélio Vascular/patologia , Endotélio Vascular/virologia , Guanidinas/farmacologia , Humanos , Mastócitos/patologia , Mastócitos/virologia , Camundongos , Choque/tratamento farmacológico , Choque/patologia , Choque/virologia , Junções Íntimas/patologia , Triptases/antagonistas & inibidores , Triptases/genética
10.
J Infect Dis ; 216(9): 1112-1121, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-28968807

RESUMO

Background: Most patients with dengue experience mild disease, dengue fever (DF), while few develop the life-threatening diseases dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS). No laboratory tests predict DHF or DSS. We evaluated whether the serum chymase level can predict DHF or DSS in adult and pediatric patients and the influence of preexisting conditions (PECs) on chymase levels. Methods: Serum chymase levels were measured in patients presenting with undifferentiated fever to hospitals in Colombo District, Sri Lanka. The value of serum the chymase concentration and clinical signs and symptoms as predictors of DHF and/or DSS was evaluated by multivariate analysis. We assessed the influence of age, PECs, and day after fever onset on the robustness of the chymase level as a biomarker for DHF and/or DSS. Results: An elevated chymase level in acute phase blood samples was highly indicative of later diagnosis of DHF or DSS for pediatric and adult patients with dengue. No recorded PECs prevented an increase in the chymase level during DHF. However, certain PECs (obesity and cardiac or lung-associated diseases) resulted in a concomitant increase in chymase levels among adult patients with DHF. Conclusions: These results show that patients with acute dengue who present with high levels of serum chymase consistently are at greater risk of DHF. The chymase level is a robust prognostic biomarker of severe dengue for adult and pediatric patients.


Assuntos
Biomarcadores/sangue , Quimases/sangue , Dengue Grave/sangue , Dengue Grave/fisiopatologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Medição de Risco , Sri Lanka , Adulto Jovem
11.
Sci Rep ; 6: 26100, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27185466

RESUMO

The development of live viral vaccines relies on empirically derived phenotypic criteria, especially small plaque sizes, to indicate attenuation. However, while some candidate vaccines successfully translated into licensed applications, others have failed safety trials, placing vaccine development on a hit-or-miss trajectory. We examined the determinants of small plaque phenotype in two dengue virus (DENV) vaccine candidates, DENV-3 PGMK30FRhL3, which produced acute febrile illness in vaccine recipients, and DENV-2 PDK53, which has a good clinical safety profile. The reasons behind the failure of PGMK30FRhL3 during phase 1 clinical trial, despite meeting the empirically derived criteria of attenuation, have never been systematically investigated. Using in vitro, in vivo and functional genomics approaches, we examined infections by the vaccine and wild-type DENVs, in order to ascertain the different determinants of plaque size. We show that PGMK30FRhL3 produces small plaques on BHK-21 cells due to its slow in vitro growth rate. In contrast, PDK53 replicates rapidly, but is unable to evade antiviral responses that constrain its spread hence also giving rise to small plaques. Therefore, at least two different molecular mechanisms govern the plaque phenotype; determining which mechanism operates to constrain plaque size may be more informative on the safety of live-attenuated vaccines.


Assuntos
Vírus da Dengue/fisiologia , Ensaio de Placa Viral , Animais , Linhagem Celular , Cricetinae , Vacinas contra Dengue/efeitos adversos , Vírus da Dengue/genética , Vírus da Dengue/crescimento & desenvolvimento , Vírus da Dengue/imunologia , Interações Hospedeiro-Patógeno , Humanos , Vacinas Atenuadas/efeitos adversos , Virulência
12.
Elife ; 42015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25783751

RESUMO

Dengue virus (DENV) is the most significant human arboviral pathogen and causes ∼400 million infections in humans each year. In previous work, we observed that mast cells (MC) mediate vascular leakage during DENV infection in mice and that levels of MC activation are correlated with disease severity in human DENV patients (St John et al., 2013b). A major risk factor for developing severe dengue is secondary infection with a heterologous serotype. The dominant theory explaining increased severity during secondary DENV infection is that cross-reactive but non-neutralizing antibodies promote uptake of virus and allow enhanced replication. Here, we define another mechanism, dependent on FcγR-mediated enhanced degranulation responses by MCs. Antibody-dependent mast cell activation constitutes a novel mechanism to explain enhanced vascular leakage during secondary DENV infection.


Assuntos
Permeabilidade Capilar/imunologia , Degranulação Celular/imunologia , Vírus da Dengue/imunologia , Dengue/imunologia , Mastócitos/imunologia , Receptores de IgG/imunologia , Animais , Especificidade de Anticorpos/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Dengue/virologia , Vírus da Dengue/fisiologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunização Passiva/métodos , Imunoglobulina G/imunologia , Mastócitos/fisiologia , Mastócitos/virologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de IgG/genética , Receptores de IgG/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA